Suppr超能文献

通过镧硼合金化诱导的能带工程和多尺度结构调控实现高性能锗铋碲热电材料

Achieving High-Performance Ge Bi Te Thermoelectrics via LaB -Alloying-Induced Band Engineering and Multi-Scale Structure Manipulation.

作者信息

Sun Qiang, Shi Xiao-Lei, Hong Min, Yin Yu, Xu Sheng-Duo, Chen Jie, Yang Lei, Zou Jin, Chen Zhi-Gang

机构信息

School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland, 4072, Australia.

Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, 4072, Australia.

出版信息

Small. 2022 Feb;18(6):e2105923. doi: 10.1002/smll.202105923. Epub 2021 Dec 2.

Abstract

In this work, a LaB -alloying strategy is reported to effectively boost the figure-of-merit (ZT) of Ge Bi Te-based alloys up to ≈2.2 at 723 K, attributed to a synergy of La-dopant induced band structuring and structural manipulation. Density-function-theory calculations reveal that La dopant enlarges the bandgap and converges the energy offset between the sub-valence bands in cubic-structured GeTe, leading to a significantly increased effective mass, which gives rise to a high Seebeck coefficient of ≈263 µV K and in turn a superior power factor of ≈43 µW cm K at 723 K. Besides, comprehensive electron microscopy characterizations reveal that the multi-scale phonon scattering centers, including a high density of planar defects, Boron nanoparticles in tandem with enhanced boundaries, dispersive Ge nanoprecipitates in the matrix, and massive point defects, contribute to a low lattice thermal conductivity of ≈0.67 W m K at 723 K. Furthermore, a high microhardness of ≈194 H is witnessed in the as-designed Ge Bi Te(LaB ) alloy, derived from the multi-defect-induced strengthening. This work provides a strategy for developing high-performance and mechanical robust middle-temperature thermoelectric materials for practical thermoelectric applications.

摘要

在这项工作中,据报道一种镧硼合金化策略可有效将锗铋碲基合金的优值(ZT)在723 K时提高到约2.2,这归因于镧掺杂剂诱导的能带结构和结构调控的协同作用。密度泛函理论计算表明,镧掺杂剂扩大了带隙并使立方结构的锗碲中亚价带之间的能量偏移收敛,导致有效质量显著增加,这使得塞贝克系数在723 K时约为263 μV K,进而在723 K时产生约43 μW cm K的优异功率因子。此外,综合电子显微镜表征表明,多尺度声子散射中心,包括高密度的平面缺陷、串联的硼纳米颗粒与增强的晶界、基体中分散的锗纳米沉淀以及大量点缺陷,有助于在723 K时实现约0.67 W m K的低晶格热导率。此外,在设计的锗铋碲(镧硼)合金中观察到约194 H的高显微硬度,这源于多缺陷诱导的强化作用。这项工作为开发用于实际热电应用的高性能且机械坚固的中温热电材料提供了一种策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验