Suppr超能文献

通过 Bi 和 Mn 共掺杂实现立方 GeTe 的相转变温度抑制和高热电性能。

Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping.

机构信息

State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, 150001 Harbin, China.

Department of Physics, University of Houston, Houston, TX 77204-5005.

出版信息

Proc Natl Acad Sci U S A. 2018 May 22;115(21):5332-5337. doi: 10.1073/pnas.1802020115. Epub 2018 May 7.

Abstract

Germanium telluride (GeTe)-based materials, which display intriguing functionalities, have been intensively studied from both fundamental and technological perspectives. As a thermoelectric material, though, the phase transition in GeTe from a rhombohedral structure to a cubic structure at ∼700 K is a major obstacle impeding applications for energy harvesting. In this work, we discovered that the phase-transition temperature can be suppressed to below 300 K by a simple Bi and Mn codoping, resulting in the high performance of cubic GeTe from 300 to 773 K. Bi doping on the Ge site was found to reduce the hole concentration and thus to enhance the thermoelectric properties. Mn alloying on the Ge site simultaneously increased the hole effective mass and the Seebeck coefficient through modification of the valence bands. With the Bi and Mn codoping, the lattice thermal conductivity was also largely reduced due to the strong point-defect scattering for phonons, resulting in a peak thermoelectric figure of merit () of ∼1.5 at 773 K and an average of ∼1.1 from 300 to 773 K in cubic GeMnBiTe. Our results open the door for further studies of this exciting material for thermoelectric and other applications.

摘要

碲化锗(GeTe)基材料具有有趣的功能,从基础和技术角度来看都得到了广泛的研究。然而,作为一种热电材料,GeTe 在约 700 K 时从菱方结构向立方结构的相变是阻碍其在能量收集方面应用的主要障碍。在这项工作中,我们发现通过简单的 Bi 和 Mn 共掺杂可以将相变温度抑制到 300 K 以下,从而在 300 到 773 K 范围内实现了立方 GeTe 的高性能。我们发现 Ge 位的 Bi 掺杂会降低空穴浓度,从而提高热电性能。Ge 位的 Mn 合金化通过改变价带同时增加了空穴有效质量和 Seebeck 系数。通过 Bi 和 Mn 共掺杂,晶格热导率也由于声子的强点缺陷散射而大大降低,导致立方 GeMnBiTe 在 773 K 时的峰值热电优值(ZT)约为 1.5,在 300 到 773 K 范围内的平均 ZT 约为 1.1。我们的结果为进一步研究这种用于热电和其他应用的令人兴奋的材料开辟了道路。

相似文献

2
Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe.用于增强菱方相GeTe热电性能的能带和声子工程
ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30756-30762. doi: 10.1021/acsami.9b07455. Epub 2019 Aug 16.
4
Thermoelectric Transport Properties of Cd Bi GeTe Alloys.CdBiGeTe 合金的热电输运性能。
ACS Appl Mater Interfaces. 2018 Nov 21;10(46):39904-39911. doi: 10.1021/acsami.8b15080. Epub 2018 Nov 9.
5
High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases.菱方相和立方相的高性能GeTe热电材料。
J Am Chem Soc. 2018 Nov 28;140(47):16190-16197. doi: 10.1021/jacs.8b09147. Epub 2018 Nov 2.
7
Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics.具有中等熵的高性能立方GeTe热电材料。
Adv Sci (Weinh). 2021 May 6;8(12):2100220. doi: 10.1002/advs.202100220. eCollection 2021 Jun.

引用本文的文献

本文引用的文献

3
High thermoelectricpower factor in graphene/hBN devices.石墨烯/hBN 器件中的高热电功率因子。
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14272-14276. doi: 10.1073/pnas.1615913113. Epub 2016 Nov 23.
4
New Insights into Intrinsic Point Defects in VVI Thermoelectric Materials.VVI热电材料中本征点缺陷的新见解
Adv Sci (Weinh). 2016 Mar 23;3(7):1600004. doi: 10.1002/advs.201600004. eCollection 2016 Jul.
5
Rationally Designing High-Performance Bulk Thermoelectric Materials.理性设计高性能块状热电材料。
Chem Rev. 2016 Oct 12;116(19):12123-12149. doi: 10.1021/acs.chemrev.6b00255. Epub 2016 Aug 31.
7
Relationship between thermoelectric figure of merit and energy conversion efficiency.热电优值与能量转换效率之间的关系。
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8205-10. doi: 10.1073/pnas.1510231112. Epub 2015 Jun 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验