Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Key Laboratory of Flexible Electronics (KLOFE) Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China.
J Mater Chem B. 2021 Dec 15;9(48):9951-9960. doi: 10.1039/d1tb02282b.
Fluorescence imaging in the second near-infrared window (NIR-II) has been an emerging technique in diverse applications with high sensitivity/resolution and deep tissue penetration. To date, the design principle of the reported NIR-II organic fluorophores has heavily relied on benzo[1,2-:4,5-']bis([1,2,5]thiadiazole) (BBTD) as a strong electron acceptor. Here, we report the rational design and synthesis of a NIR-II fluorescent molecule with the rarely used [1,2,5]thiadiazolo[3,4-]benzotriazole (TBZ) core to replace BBTD as the electron acceptor. Thanks to the weaker electron deficiency of the TBZ core than BBTD, the newly yielded NIR-II molecule (BTB) based nanoparticles have a higher mass extinction coefficient and quantum yield in water. In contrast, the nanoparticle suspension of its counterpart with BBTD as the core is nearly nonemissive. The NIR-II BTB nanoparticles allow video-rate fluorescence imaging for vasculature imaging in ears, hindlimbs, and the brain of the mouse. Additionally, its large absorptivity in the NIR-I region also promotes bioimaging using photoacoustic microscopy (PAM) and tomography (PAT). Upon surface conjugation with the Arg-Gly-Asp (RGD) peptide, the functionalized nanoparticles ensured targeted detection of integrin-overexpressed tumors through both imaging modalities in two- and three-dimensional views. Thus, our approach to engineering acceptors of organic fluorophores offers a promising molecular design strategy to afford new NIR-II fluorophores for versatile biomedical imaging applications.
近红外二区(NIR-II)荧光成像是一种新兴的技术,在具有高灵敏度/分辨率和深组织穿透能力的多种应用中得到了广泛应用。迄今为止,所报道的 NIR-II 有机荧光团的设计原则主要依赖于苯并[1,2-:4,5-']双([1,2,5]噻二唑)(BBTD)作为强电子受体。在这里,我们报告了一种以很少使用的[1,2,5]噻二唑并[3,4-]苯并三唑(TBZ)为核心的 NIR-II 荧光分子的合理设计和合成,以取代 BBTD 作为电子受体。由于 TBZ 核的电子缺乏性比 BBTD 弱,新生成的 NIR-II 分子(BTB)的纳米粒子在水中具有更高的质量消光系数和量子产率。相比之下,以 BBTD 为核心的同类纳米粒子悬浮液几乎没有发光。NIR-II BTB 纳米粒子允许在耳朵、后腿和小鼠大脑的血管成像中进行视频速率荧光成像。此外,其在近红外一区(NIR-I)的大吸收率也促进了光声显微镜(PAM)和层析成像(PAT)的生物成像。经 Arg-Gly-Asp(RGD)肽表面修饰后,功能化纳米粒子通过两种成像模式在二维和三维视图中确保了对整合素过表达肿瘤的靶向检测。因此,我们设计有机荧光团受体的方法为多功能生物医学成像应用提供了一种有前途的分子设计策略,可获得新的 NIR-II 荧光团。