Suppr超能文献

分析基因-环境互作中相互作用和离散效应的模型。

Modeling Interaction and Dispersion Effects in the Analysis of Gene-by-Environment Interaction.

机构信息

Graduate School of Education, Stanford University and Center for Population Health Sciences, Stanford Medicine, Stanford, USA.

Graduate School of Education, Stanford University, Stanford, USA.

出版信息

Behav Genet. 2022 Jan;52(1):56-64. doi: 10.1007/s10519-021-10090-8. Epub 2021 Dec 2.

Abstract

Genotype-by-environment interaction (GxE) studies probe heterogeneity in response to risk factors or interventions. Popular methods for estimation of GxE examine multiplicative interactions between individual genetic and environmental measures. However, risk factors and interventions may modulate the total variance of an epidemiological outcome that itself represents the aggregation of many other etiological components. We expand the traditional GxE model to directly model genetic and environmental moderation of the dispersion of the outcome. We derive a test statistic, [Formula: see text], for inferring whether an interaction identified between individual genetic and environmental measures represents a more general pattern of moderation of the total variance in the phenotype by either the genetic or the environmental measure. We validate our method via extensive simulation, and apply it to investigate genotype-by-birth year interactions for Body Mass Index (BMI) with polygenic scores in the Health and Retirement Study (N = 11,586) and individual genetic variants in the UK Biobank (N = 380,605). We find that changes in the penetrance of a genome-wide polygenic score for BMI across birth year are partly representative of a more general pattern of expanding BMI variation across generations. Three individual variants found to be more strongly associated with BMI among later born individuals, were also associated with the magnitude of variability in BMI itself within any given birth year, suggesting that they may confer general sensitivity of BMI to a range of unmeasured factors beyond those captured by birth year. We introduce an expanded GxE regression model that explicitly models genetic and environmental moderation of the dispersion of the outcome under study. This approach can determine whether GxE interactions identified are specific to the measured predictors or represent a more general pattern of moderation of the total variance in the outcome by the genetic and environmental measures.

摘要

基因型-环境交互作用(GxE)研究探究了对风险因素或干预措施的反应的异质性。用于估计 GxE 的流行方法检查个体遗传和环境测量之间的乘法交互作用。然而,风险因素和干预措施可能会调节流行病学结果的总方差,而该结果本身代表了许多其他病因成分的聚合。我们扩展了传统的 GxE 模型,以直接模拟遗传和环境对结果离散度的调节。我们推导出一个检验统计量[公式:见文本],用于推断在个体遗传和环境测量之间识别出的相互作用是否代表了遗传或环境测量对表型总方差的更一般模式的调节。我们通过广泛的模拟验证了我们的方法,并应用它来研究健康与退休研究(N = 11586)中的多基因评分与体重指数(BMI)的出生年份之间的基因型-出生年份相互作用,以及英国生物库中的个体遗传变异(N = 380605)。我们发现,BMI 的全基因组多基因评分在出生年份的穿透性变化部分代表了 BMI 变异在代际间扩展的更一般模式。在晚出生的个体中发现与 BMI 更强相关的三个个体变异体,也与任何特定出生年份内 BMI 本身的变异性幅度相关,这表明它们可能赋予 BMI 对出生年份之外的一系列未测量因素的普遍敏感性,而这些因素无法通过出生年份来捕捉。我们引入了一个扩展的 GxE 回归模型,该模型明确地模拟了遗传和环境对所研究结果离散度的调节。这种方法可以确定识别出的 GxE 相互作用是否特定于测量的预测因子,或者代表遗传和环境测量对结果总方差的更一般模式的调节。

相似文献

1
Modeling Interaction and Dispersion Effects in the Analysis of Gene-by-Environment Interaction.
Behav Genet. 2022 Jan;52(1):56-64. doi: 10.1007/s10519-021-10090-8. Epub 2021 Dec 2.
3
Using Genetic Marginal Effects to Study Gene-Environment Interactions with GWAS Data.
Behav Genet. 2021 May;51(3):358-373. doi: 10.1007/s10519-021-10058-8. Epub 2021 Apr 26.
4
Leveraging phenotypic variability to identify genetic interactions in human phenotypes.
Am J Hum Genet. 2021 Jan 7;108(1):49-67. doi: 10.1016/j.ajhg.2020.11.016. Epub 2020 Dec 15.
6
Polygenic Scores for Plasticity: A New Tool for Studying Gene-Environment Interplay.
Demography. 2022 Jun 1;59(3):1045-1070. doi: 10.1215/00703370-9957418.
7
Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits.
PLoS One. 2013 Oct 28;8(10):e77442. doi: 10.1371/journal.pone.0077442. eCollection 2013.
8
Distinct explanations underlie gene-environment interactions in the UK Biobank.
Am J Hum Genet. 2025 Mar 6;112(3):644-658. doi: 10.1016/j.ajhg.2025.01.014. Epub 2025 Feb 17.
9
Inferring Gene-by-Environment Interactions with a Bayesian Whole-Genome Regression Model.
Am J Hum Genet. 2020 Oct 1;107(4):698-713. doi: 10.1016/j.ajhg.2020.08.009. Epub 2020 Sep 3.

引用本文的文献

3
Genotype × environment interactions in gene regulation and complex traits.
Nat Genet. 2024 Jun;56(6):1057-1068. doi: 10.1038/s41588-024-01776-w. Epub 2024 Jun 10.
4
Exploring the Fetal Origins Hypothesis Using Genetic Data.
Soc Forces. 2024 Feb 8;102(4):1555-1581. doi: 10.1093/sf/soae018. eCollection 2024 Jun.
6
Many roads to a gene-environment interaction.
Am J Hum Genet. 2024 Apr 4;111(4):626-635. doi: 10.1016/j.ajhg.2024.03.002.
9
Factorizing polygenic epistasis improves prediction and uncovers biological pathways in complex traits.
Am J Hum Genet. 2023 Nov 2;110(11):1875-1887. doi: 10.1016/j.ajhg.2023.10.002.
10
Amplification is the primary mode of gene-by-sex interaction in complex human traits.
Cell Genom. 2023 Apr 6;3(5):100297. doi: 10.1016/j.xgen.2023.100297. eCollection 2023 May 10.

本文引用的文献

1
Interactions between Polygenic Scores and Environments: Methodological and Conceptual Challenges.
Sociol Sci. 2020 Sep;7:465-486. doi: 10.15195/v7.a19. Epub 2020 Sep 21.
2
Polygenic Scores for Plasticity: A New Tool for Studying Gene-Environment Interplay.
Demography. 2022 Jun 1;59(3):1045-1070. doi: 10.1215/00703370-9957418.
4
The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation.
Nat Genet. 2021 Apr;53(4):420-425. doi: 10.1038/s41588-021-00783-5.
5
A two-step approach to testing overall effect of gene-environment interaction for multiple phenotypes.
Bioinformatics. 2021 Apr 5;36(24):5640-5648. doi: 10.1093/bioinformatics/btaa1083.
6
Reflection on modern methods: demystifying robust standard errors for epidemiologists.
Int J Epidemiol. 2021 Mar 3;50(1):346-351. doi: 10.1093/ije/dyaa260.
7
Leveraging phenotypic variability to identify genetic interactions in human phenotypes.
Am J Hum Genet. 2021 Jan 7;108(1):49-67. doi: 10.1016/j.ajhg.2020.11.016. Epub 2020 Dec 15.
9
Trends in Obesity Prevalence by Race and Hispanic Origin-1999-2000 to 2017-2018.
JAMA. 2020 Sep 22;324(12):1208-1210. doi: 10.1001/jama.2020.14590.
10
Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank.
Sci Adv. 2019 Aug 14;5(8):eaaw3538. doi: 10.1126/sciadv.aaw3538. eCollection 2019 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验