Suppr超能文献

一种用于检验基因-环境相互作用对多种表型总体效应的两步法。

A two-step approach to testing overall effect of gene-environment interaction for multiple phenotypes.

作者信息

Majumdar Arunabha, Burch Kathryn S, Haldar Tanushree, Sankararaman Sriram, Pasaniuc Bogdan, Gauderman W James, Witte John S

机构信息

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA.

出版信息

Bioinformatics. 2021 Apr 5;36(24):5640-5648. doi: 10.1093/bioinformatics/btaa1083.

Abstract

MOTIVATION

While gene-environment (GxE) interactions contribute importantly to many different phenotypes, detecting such interactions requires well-powered studies and has proven difficult. To address this, we combine two approaches to improve GxE power: simultaneously evaluating multiple phenotypes and using a two-step analysis approach. Previous work shows that the power to identify a main genetic effect can be improved by simultaneously analyzing multiple related phenotypes. For a univariate phenotype, two-step methods produce higher power for detecting a GxE interaction compared to single step analysis. Therefore, we propose a two-step approach to test for an overall GxE effect for multiple phenotypes.

RESULTS

Using simulations we demonstrate that, when more than one phenotype has GxE effect (i.e. GxE pleiotropy), our approach offers substantial gain in power (18-43%) to detect an aggregate-level GxE effect for a multivariate phenotype compared to an analogous two-step method to identify GxE effect for a univariate phenotype. We applied the proposed approach to simultaneously analyze three lipids, LDL, HDL and Triglyceride with the frequency of alcohol consumption as environmental factor in the UK Biobank. The method identified two loci with an overall GxE effect on the vector of lipids, one of which was missed by the competing approaches.

AVAILABILITY AND IMPLEMENTATION

We provide an R package MPGE implementing the proposed approach which is available from CRAN: https://cran.r-project.org/web/packages/MPGE/index.html.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

虽然基因-环境(GxE)相互作用对许多不同表型起着重要作用,但检测此类相互作用需要有足够效能的研究,且已证明具有挑战性。为解决这一问题,我们结合了两种方法来提高GxE效能:同时评估多个表型并采用两步分析法。先前的研究表明,通过同时分析多个相关表型,识别主要基因效应的效能可以得到提高。对于单变量表型,与单步分析相比,两步法在检测GxE相互作用时具有更高的效能。因此,我们提出一种两步法来检验多个表型的总体GxE效应。

结果

通过模拟我们证明,当不止一个表型具有GxE效应(即GxE多效性)时,与用于识别单变量表型GxE效应的类似两步法相比,我们的方法在检测多变量表型的总体水平GxE效应时,效能有显著提高(18 - 43%)。我们将所提出的方法应用于英国生物银行,以饮酒频率作为环境因素,同时分析三种脂质,即低密度脂蛋白(LDL)、高密度脂蛋白(HDL)和甘油三酯。该方法识别出两个对脂质向量具有总体GxE效应的基因座,其中一个是其他竞争方法所遗漏的。

可用性与实现

我们提供了一个实现所提方法的R包MPGE,可从CRAN获取:https://cran.r-project.org/web/packages/MPGE/index.html。

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验