Duncan Peter J, Fazli Mehran, Romanò Nicola, Le Tissier Paul, Bertram Richard, Shipston Michael J
Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Department of Mathematics, Florida State University, Tallahassee, FL, USA.
J Physiol. 2022 Jan;600(2):313-332. doi: 10.1113/JP282367. Epub 2021 Dec 23.
Coordination of an appropriate stress response is dependent upon anterior pituitary corticotroph excitability in response to hypothalamic secretagogues and glucocorticoid negative feedback. A key determinant of corticotroph excitability is large conductance calcium- and voltage-activated (BK) potassium channels that are critical for promoting corticotrophin-releasing hormone (CRH)-induced bursting that enhances adrenocorticotrophic hormone secretion. Previous studies revealed hypothalamic-pituitary-adrenal axis hyperexcitability following chronic stress (CS) is partly a function of increased corticotroph output. Thus, we hypothesise that chronic stress promotes corticotroph excitability through a BK-dependent mechanism. Corticotrophs from CS mice displayed significant increase in spontaneous bursting, which was suppressed by the BK blocker paxilline. Mathematical modelling reveals that the time constant of BK channel activation, plus properties and proportion of BK channels functionally coupled to L-type Ca channels determines bursting activity. Surprisingly, CS corticotrophs (but not unstressed) display CRH-induced bursting even when the majority of BK channels are inhibited by paxilline, which modelling suggests is a consequence of the stochastic behaviour of a small number of BK channels coupled to L-type Ca channels. Our data reveal that changes in the stochastic behaviour of a small number of BK channels can finely tune corticotroph excitability through stress-induced changes in BK channel properties. Importantly, regulation of BK channel function is highly context dependent allowing dynamic control of corticotroph excitability over a large range of time domains and physiological challenges in health and disease. This is likely to occur in other BK-expressing endocrine cells, with important implications for the physiological processes they regulate and the potential for therapy. KEY POINTS: Chronic stress (CS) is predicted to modify the electrical excitability of anterior pituitary corticotrophs. Electrophysiological recordings from isolated corticotrophs from CS male mice display spontaneous electrical bursting behaviour compared to the tonic spiking behaviour of unstressed corticotrophs. The increased spontaneous bursting from CS corticotrophs is BK-dependent and mathematical modelling reveals that the time constant of activation, properties and proportion of BK channels functionally coupled to L-type calcium channels determines the promotion of bursting activity. CS (but not unstressed) corticotrophs display corticotrophin-releasing hormone-induced bursting even when the majority of BK channels are pharmacologically inhibited, which can be explained by the stochastic behaviour of a small number of BK channels with distinct properties. Corticotroph excitability can be finely tuned by the stochastic behaviour of a small number of BK channels dependent on their properties and functional co-localisation with L-type calcium channels to control corticotroph excitability over diverse time domains and physiological challenges.
适当应激反应的协调取决于垂体前叶促肾上腺皮质激素细胞对下丘脑促分泌素的兴奋性以及糖皮质激素的负反馈。促肾上腺皮质激素细胞兴奋性的一个关键决定因素是大电导钙激活和电压激活(BK)钾通道,该通道对于促进促肾上腺皮质激素释放激素(CRH)诱导的爆发式放电至关重要,而这种爆发式放电会增强促肾上腺皮质激素的分泌。先前的研究表明,慢性应激(CS)后下丘脑 - 垂体 - 肾上腺轴的过度兴奋部分是促肾上腺皮质激素细胞输出增加的结果。因此,我们假设慢性应激通过一种BK依赖性机制促进促肾上腺皮质激素细胞的兴奋性。来自CS小鼠的促肾上腺皮质激素细胞显示出自发性爆发式放电显著增加,这被BK阻滞剂哌克昔林所抑制。数学模型表明,BK通道激活的时间常数,以及与L型钙通道功能偶联的BK通道的特性和比例决定了爆发式放电活动。令人惊讶的是,即使大多数BK通道被哌克昔林抑制,CS促肾上腺皮质激素细胞(而非未受应激的细胞)仍显示出CRH诱导的爆发式放电,模型显示这是少数与L型钙通道偶联的BK通道随机行为的结果。我们的数据表明,少数BK通道随机行为的变化可通过应激诱导的BK通道特性变化来精细调节促肾上腺皮质激素细胞的兴奋性。重要的是,BK通道功能的调节高度依赖于背景,从而能够在健康和疾病状态下的广泛时间域和生理挑战中动态控制促肾上腺皮质激素细胞的兴奋性。这可能发生在其他表达BK的内分泌细胞中,对它们所调节的生理过程以及治疗潜力具有重要意义。关键点:预计慢性应激(CS)会改变垂体前叶促肾上腺皮质激素细胞的电兴奋性。与未受应激的促肾上腺皮质激素细胞的紧张性动作电位行为相比,来自CS雄性小鼠的分离促肾上腺皮质激素细胞进行的电生理记录显示出自发性电爆发式放电行为。CS促肾上腺皮质激素细胞自发性爆发式放电增加是BK依赖性的,数学模型表明,激活时间常数、与L型钙通道功能偶联的BK通道的特性和比例决定了爆发式放电活动的增强。即使大多数BK通道被药物抑制,CS(而非未受应激的)促肾上腺皮质激素细胞仍显示出促肾上腺皮质激素释放激素诱导的爆发式放电,这可以用少数具有独特特性的BK通道的随机行为来解释。促肾上腺皮质激素细胞的兴奋性可通过少数BK通道的随机行为进行精细调节,这取决于它们的特性以及与L型钙通道的功能共定位,从而在不同的时间域和生理挑战中控制促肾上腺皮质激素细胞的兴奋性。