Shao Changyu, Zhang Zhisen, Jin Wenjing, Zhang Zhan, Jin Biao, Jiang Shuqin, Pan Haihua, Tang Ruikang, De Yoreo James J, Liu Xiang Yang
Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China.
Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
ACS Biomater Sci Eng. 2023 Apr 10;9(4):1808-1814. doi: 10.1021/acsbiomaterials.1c00713. Epub 2021 Dec 2.
Controlling oriented crystallization is key to producing bonelike composite materials with a well-organized structure. However, producing this type of composite material using synthetic biopolymers as scaffolds is challenging. Inspired by the molecular structure of collagen-I, a collagenlike peptide─(Pro-Hyp-Gly) (POG10)─was designed to produce self-assembled fibrils that resemble the structure of collagen-I fibrils. In addition, the oriented mineralization of HAP crystals is formed in the fibrils that reproduces a bonelike material similar to collagen-I fibril mineralization. Unlike collagen-I fibrils, POG10 fibrils do not contain gap spaces. The molecular simulation results indicate that in addition to space confinement, the molecular field generated by POG10 can also confine the orientation of HAP, enriching our understanding of physical confinement and shedding light on the design of synthetic biopolymer scaffolds for bonelike material fabrication.
控制取向结晶是制备具有有序结构的骨样复合材料的关键。然而,使用合成生物聚合物作为支架来生产这种类型的复合材料具有挑战性。受I型胶原蛋白分子结构的启发,设计了一种类胶原蛋白肽─(Pro-Hyp-Gly) (POG10)─以产生类似于I型胶原纤维结构的自组装纤维。此外,在纤维中形成了HAP晶体的取向矿化,再现了类似于I型胶原纤维矿化的骨样材料。与I型胶原纤维不同,POG10纤维不包含间隙空间。分子模拟结果表明,除了空间限制外,POG10产生的分子场也可以限制HAP的取向,丰富了我们对物理限制的理解,并为骨样材料制造的合成生物聚合物支架设计提供了启示。