The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China.
PLoS One. 2021 Dec 2;16(12):e0260720. doi: 10.1371/journal.pone.0260720. eCollection 2021.
Globally, non-small cell lung cancer (NSCLC) is the most common malignancy and its prognosis remains poor because of the lack of reliable early diagnostic biomarkers. The competitive endogenous RNA (ceRNA) network plays an important role in the tumorigenesis and prognosis of NSCLC. Tumor immune microenvironment (TIME) is valuable for predicting the response to immunotherapy and determining the prognosis of NSCLC patients. To understand the TIME-related ceRNA network, the RNA profiling datasets from the Genotype-Tissue Expression and The Cancer Genome Atlas databases were analyzed to identify the mRNAs, microRNAs, and lncRNAs associated with the differentially expressed genes. Weighted gene co-expression network analysis revealed that the brown module of mRNAs and the turquoise module of lncRNAs were the most important. Interactions among microRNAs, lncRNAs, and mRNAs were prognosticated using miRcode, miRDB, TargetScan, miRTarBase, and starBase databases. A prognostic model consisting of 13 mRNAs was established using univariate and multivariate Cox regression analyses and validated by the receiver operating characteristic (ROC) curve. The 22 immune infiltrating cell types were analyzed using the CIBERSORT algorithm, and results showed that the high-risk score of this model was related to poor prognosis and an immunosuppressive TIME. A lncRNA-miRNA-mRNA ceRNA network that included 69 differentially expressed lncRNAs (DElncRNAs) was constructed based on the five mRNAs obtained from the prognostic model. ROC survival analysis further showed that the seven DElncRNAs had a substantial prognostic value for the overall survival (OS) in NSCLC patients; the area under the curve was 0.65. In addition, the high-risk group showed drug resistance to several chemotherapeutic and targeted drugs including cisplatin, paclitaxel, docetaxel, gemcitabine, and gefitinib. The differential expression of five mRNAs and seven lncRNAs in the ceRNA network was supported by the results of the HPA database and RT-qPCR analyses. This comprehensive analysis of a ceRNA network identified a set of biomarkers for prognosis and TIME prediction in NSCLC.
全球范围内,非小细胞肺癌(NSCLC)是最常见的恶性肿瘤,由于缺乏可靠的早期诊断生物标志物,其预后仍然较差。竞争性内源性 RNA(ceRNA)网络在 NSCLC 的发生发展和预后中起着重要作用。肿瘤免疫微环境(TIME)对于预测免疫治疗反应和确定 NSCLC 患者的预后具有重要价值。为了了解与 TIME 相关的 ceRNA 网络,对来自基因型组织表达和癌症基因组图谱数据库的 RNA 谱数据集进行了分析,以鉴定与差异表达基因相关的 mRNAs、miRNAs 和 lncRNAs。加权基因共表达网络分析显示,mRNAs 的棕色模块和 lncRNAs 的绿松石模块最为重要。使用 miRcode、miRDB、TargetScan、miRTarBase 和 starBase 数据库预测了 microRNAs、lncRNAs 和 mRNAs 之间的相互作用。使用单变量和多变量 Cox 回归分析建立了由 13 个 mRNAs 组成的预后模型,并通过接收者操作特征(ROC)曲线进行了验证。使用 CIBERSORT 算法分析了 22 种免疫浸润细胞类型,结果表明该模型的高风险评分与预后不良和免疫抑制性 TIME 有关。基于预后模型中获得的五个 mRNAs,构建了包含 69 个差异表达 lncRNA(DElncRNA)的 lncRNA-miRNA-mRNA ceRNA 网络。ROC 生存分析进一步表明,这 7 个 DElncRNA 对 NSCLC 患者的总生存(OS)具有显著的预后价值;曲线下面积为 0.65。此外,高危组对顺铂、紫杉醇、多西他赛、吉西他滨和吉非替尼等几种化疗药物和靶向药物均表现出耐药性。ceRNA 网络中五个 mRNAs 和七个 lncRNAs 的差异表达得到 HPA 数据库和 RT-qPCR 分析结果的支持。对 ceRNA 网络的综合分析确定了一组 NSCLC 预后和 TIME 预测的生物标志物。