Suppr超能文献

球磨α-FeOOH/生物炭复合材料活化过二硫酸盐去除苯酚:组分贡献和内在机制。

Activation of peroxydisulfate by ball-milled α-FeOOH/biochar composite for phenol removal: Component contribution and internal mechanisms.

机构信息

College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.

出版信息

Environ Pollut. 2022 Jan 15;293:118596. doi: 10.1016/j.envpol.2021.118596. Epub 2021 Nov 29.

Abstract

Persulfate-based advanced oxidation process is considered as a promising technology for the degradation of phenol, where efficient, cost effective, and green methods with high peroxydisulfate (PS) activation capacity is of increasing demand. In this work, an in-situ liquid phase precipitation combined with ball milling method was applied for the synthesized of α-FeOOH/biochar, as be the PS activator for phenol degradation. Results showed that the ball-milled α-FeOOH and red pine wood biochar prepared at 700 °C (BM-α-FeOOH/PBC700) exhibited the highest catalytic property with PS for phenol oxidation (a phenol removal rate of 100%), compared with the BM-α-FeOOH (16.0%) and BMPBC700 (66.3%). The presence of intermediate products such as hydroquinone and catechol, and total organic carbon (TOC) removal rate (88.9%) proved the oxidation of phenol in the BM-α-FeOOH/PBC700+PS system. The characterization results showed that the functional groups (e.g., CO, C-O, Fe-O, and Si-O), the dissolved organic matter (DOM) in biochar, the loading of Fe element, and higher degree of graphitization and defect structures, contributed to the activation of PS to form free radicals (i.e., SO, ·OH, ·O, and h) for phenol oxidation, of which, SO· and ·OH account for 72.1% of the phenol removal rate. The specific contribution to the PS activation for phenol oxidation by each part of the materials was calculated based on the "whole to part" experiment. The contribution of DOM, acid-soluble substance, and carbon matrix and basal part in BM-α-FeOOH/PBC700 were 6.0%, 40.9%, and 53.1%, respectively. The reusability experiments of BM-α-FeOOH/PBC700 demonstrated that the composite was relatively stable after four cycles of reuse. Among three co-existing anions (NO, Cl, and HCO), HCO played the most significant inhibition effects on phenol removal through reducing the phenol removal rate from 89.6% to 77.9%. This work provides guidance for the design of high active and stable carbon materials that activate PS to remove phenol.

摘要

过硫酸盐高级氧化技术被认为是一种有前途的酚类降解技术,其中高效、经济、绿色且具有高过二硫酸盐 (PS) 活化能力的方法的需求日益增加。在这项工作中,采用原位液相沉淀结合球磨法合成了α-FeOOH/生物炭,作为 PS 活化剂用于酚类降解。结果表明,与 BM-α-FeOOH(16.0%)和 BMPBC700(66.3%)相比,在 PS 存在下,球磨α-FeOOH 和红松生物炭在 700°C 下制备的(BM-α-FeOOH/PBC700)具有最高的催化性能,可实现酚类氧化(酚去除率为 100%)。中间产物如对苯二酚和邻苯二酚的存在以及总有机碳 (TOC) 去除率(88.9%)证明了 BM-α-FeOOH/PBC700+PS 体系中酚的氧化。表征结果表明,生物炭中的功能基团(例如,CO、C-O、Fe-O 和 Si-O)、溶解有机质 (DOM)、Fe 元素的负载量以及更高的石墨化程度和缺陷结构,有助于 PS 形成自由基(即 SO·、·OH、·O 和 h),从而氧化酚,其中 SO·和·OH 占酚去除率的 72.1%。根据“整体到部分”实验计算了材料的各个部分对 PS 活化的具体贡献。基于 DOM、酸溶物质、碳基质和 BM-α-FeOOH/PBC700 的基底部分对 PS 氧化的贡献分别为 6.0%、40.9%和 53.1%。BM-α-FeOOH/PBC700 的重复使用实验表明,该复合材料在重复使用四次后仍然相对稳定。在三种共存阴离子(NO、Cl 和 HCO)中,HCO 通过将酚去除率从 89.6%降低到 77.9%,对酚去除的抑制作用最为显著。这项工作为设计高效稳定的碳材料以激活 PS 去除酚类提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验