Tang Diyong, Lu Li, Luo Zhipeng, Yang Baokun, Ke Jun, Lei Weidong, Zhen Hongran, Zhuang Yuan, Sun Jie, Chen Ke, Sun Jie
Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China.
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
Nanomaterials (Basel). 2022 Jul 28;12(15):2586. doi: 10.3390/nano12152586.
Biochars are considered as promising materials in energy storage and environmental remediation because of their unique physicochemical properties and low cost. However, the fabrication of multifunctional biochar materials with a well-developed hierarchical porous structure as well as self-doped functionalities via a facile strategy remains a challenge. Herein, we demonstrate a heteroatom-doped porous biochar, prepared by a hydrothermal pretreatment followed by a molten salt activation route. With the creation of a high specific surface area (1501.9 m/g), a hierarchical porous structure, and the incorporation of oxygen-/nitrogen-functional groups, the as-prepared biochar (BC-24) exhibits great potential for supercapacitor application and organic pollutant elimination. The assembled biochar electrode delivers a specific capacitance of 378 F/g at 0.2 A/g with a good rate capability of 198 F/g at 10 A/g, and excellent cycling stability with 94.5% capacitance retention after 10,000 recycles. Moreover, BC-24 also exhibits superior catalytic activity for phenol degradation through peroxydisulfate (PDS) activation. The phenol (0.2 mM) can be effectively absorbed and then completely degraded within only 25 min over a wide pH range with low catalyst and PDS dosages. More importantly, TOC analysis indicates 81.7% of the phenol is mineralized within 60 min, confirming the effectiveness of the BC-24/PDS system. Quenching experiments and EPR measurements reveal that SO· and ·OH as well as O are involved in the phenol degradation, while the non-radical pathway plays the dominant role. This study provides valuable insights into the preparation of cost-effective carbon materials for supercapacitor application and organic contaminant remediation.
生物炭因其独特的物理化学性质和低成本,被认为是储能和环境修复领域中有前景的材料。然而,通过简便策略制备具有发达分级多孔结构以及自掺杂功能的多功能生物炭材料仍然是一个挑战。在此,我们展示了一种杂原子掺杂的多孔生物炭,它是通过水热预处理然后经熔盐活化路线制备而成。通过创造高比表面积(1501.9 m²/g)、分级多孔结构以及引入氧/氮官能团,所制备的生物炭(BC - 24)在超级电容器应用和有机污染物去除方面展现出巨大潜力。组装的生物炭电极在0.2 A/g电流密度下的比电容为378 F/g,在10 A/g电流密度下具有198 F/g的良好倍率性能,并且在10000次循环后具有94.5%的电容保持率,展现出优异的循环稳定性。此外,BC - 24在通过过二硫酸盐(PDS)活化降解苯酚方面也表现出卓越的催化活性。在低催化剂和PDS用量的情况下,苯酚(0.2 mM)在很宽的pH范围内仅需25分钟就能被有效吸附并完全降解。更重要的是,总有机碳(TOC)分析表明在60分钟内81.7%的苯酚被矿化,证实了BC - 24/PDS体系的有效性。猝灭实验和电子顺磁共振(EPR)测量表明,SO₄·⁻、·OH以及O₂⁻参与了苯酚降解过程,而非自由基途径起主导作用。本研究为制备用于超级电容器应用和有机污染物修复的经济高效碳材料提供了有价值的见解。