Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia; Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia; Siberian Federal University, Krasnoyarsk, 660041, Russia.
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia; Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia.
Talanta. 2022 Mar 1;239:123092. doi: 10.1016/j.talanta.2021.123092. Epub 2021 Nov 24.
A top-down nanofabrication approach involving molecular beam epitaxy and electron beam lithography was used to obtain silicon nanowire-based back gate field-effect transistors with Schottky contacts on silicon-on-insulator (SOI) wafers. The resulting device is applied in biomolecular detection based on the changes in the drain-source current (I). In this context, we have explained the physical mechanisms of charge carrier transport in the nanowire using energy band diagrams and numerical 2D simulations in TCAD. The results of the experiment and numerical modeling matched well and may be used to develop novel types of nanowire-based biosensors.
采用自上而下的纳米制造方法,包括分子束外延和电子束光刻,在绝缘体上硅(SOI)晶圆上获得基于硅纳米线的肖特基接触背栅场效应晶体管。所得到的器件应用于基于漏源电流(I)变化的生物分子检测。在这种情况下,我们使用能带图和 TCAD 中的数值 2D 模拟解释了纳米线中电荷载流子输运的物理机制。实验和数值模拟的结果吻合较好,可用于开发新型纳米线生物传感器。