Tosetto Louise, Williamson Jane E, White Thomas E, Hart Nathan S
Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
Sydney Institute of Marine Science, Mosman, New South Wales, Australia.
Brain Behav Evol. 2021;96(3):103-123. doi: 10.1159/000519894. Epub 2021 Dec 2.
Bluelined goatfish (Upeneichthys lineatus) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that U. lineatus can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether U. lineatus possess visual pigments with sensitivity to long ("red") wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while U. lineatuslack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that U. lineatuscan distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that U. lineatus can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that U. lineatus can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that U. lineatus have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.
蓝线金线鱼(Upeneichthys lineatus)呈现出动态的体色变化,在觅食时能迅速从浅淡的浅黄色/白色水平条纹图案转变为醒目的垂直条纹红色图案。如果蓝线金线鱼能够检测并区分这种图案,那么这种红色图案可能是与同种个体进行交流的重要觅食信号。我们通过生理和行为实验,首先研究了蓝线金线鱼是否拥有对长波长(“红色”)光敏感的视觉色素,以及它们是否能够区分红色。对视网膜光感受器的显微分光光度测量表明,虽然蓝线金线鱼缺乏专门用于光谱红色部分的视觉色素,但它们的色素可能在这个光谱带赋予了一定的敏感性。行为颜色辨别实验表明,蓝线金线鱼能够将红色奖励刺激与不同亮度的灰色干扰刺激区分开来。此外,当呈现不同亮度的红色刺激时,它们大多能够将较深和较浅的红色与灰色干扰物区分开来。我们还获得了视力的解剖学估计值,这表明蓝线金线鱼在清澈的水中大约7米外能够分辨同种个体的对比条纹。最后,我们测量了金线鱼身体上红色和白色的光谱反射率。视觉模型表明,在有较长波长光的情况下,蓝线金线鱼能够区分体色的色度和非色度差异。这项研究表明,蓝线金线鱼具有颜色视觉能力,并且很可能能够在光谱的长波长区域区分颜色,在该区域红色身体图案强烈反射光线。因此,看到红色的能力可能在识别同种个体的视觉信号方面具有优势。这项研究进一步加深了我们对视觉信号如何与视觉能力共同进化以及视觉交流在海洋环境中的作用的理解。