Suppr超能文献

术前超声特征联合临床因素预测 HER2 阳性型(非腔面)乳腺癌。

Application of preoperative ultrasound features combined with clinical factors in predicting HER2-positive subtype (non-luminal) breast cancer.

机构信息

Department of Ultrasound, First Floor, Building 3, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Xuhui District, Shanghai, China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

BMC Med Imaging. 2021 Dec 2;21(1):184. doi: 10.1186/s12880-021-00714-0.

Abstract

BACKGROUND

Human epidermal growth factor receptor2+ subtype breast cancer has a high degree of malignancy and a poor prognosis. The aim of this study is to develop a prediction model for the human epidermal growth factor receptor2+ subtype (non-luminal) of breast cancer based on the clinical and ultrasound features related with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor2.

METHODS

We collected clinical data and reviewed preoperative ultrasound images of enrolled breast cancers from September 2017 to August 2020. We divided the data into in three groups as follows. Group I: estrogen receptor ± , Group II: progesterone receptor ± and Group III: human epidermal growth factor receptor2 ± . Univariate and multivariate logistic regression analyses were used to analyze the clinical and ultrasound features related with biomarkers among these groups. A model to predict human epidermal growth factor receptor2+ subtype was then developed based on the results of multivariate regression analyses, and the efficacy was evaluated using the area under receiver operating characteristic curve, accuracy, sensitivity, specificity.

RESULTS

The human epidermal growth factor receptor2+ subtype accounted for 138 cases (11.8%) in the training set and 51 cases (10.1%) in the test set. In the multivariate regression analysis, age ≤ 50 years was an independent predictor of progesterone receptor + (p = 0.007), and posterior enhancement was a negative predictor of progesterone receptor + (p = 0.013) in Group II; palpable axillary lymph node, round, irregular shape and calcifications were independent predictors of the positivity for human epidermal growth factor receptor-2 in Group III (p = 0.001, p = 0.007, p = 0.010, p < 0.001, respectively). In Group I, shape was the only factor related to estrogen receptor status in the univariate analysis (p < 0.05). The area under receiver operating characteristic curve, accuracy, sensitivity, specificity of the model to predict human epidermal growth factor receptor2+ subtype breast cancer was 0.697, 60.14%, 72.46%, 58.49% and 0.725, 72.06%, 64.71%, 72.89% in the training and test sets, respectively.

CONCLUSIONS

Our study established a model to predict the human epidermal growth factor receptor2-positive subtype with moderate performance. And the results demonstrated that clinical and ultrasound features were significantly associated with biomarkers.

摘要

背景

人表皮生长因子受体 2 阳性亚型乳腺癌恶性程度高,预后差。本研究旨在建立基于与雌激素受体、孕激素受体和人表皮生长因子受体 2 相关的临床和超声特征的人表皮生长因子受体 2 阳性(非腔面)乳腺癌预测模型。

方法

我们收集了 2017 年 9 月至 2020 年 8 月期间入组乳腺癌患者的临床数据和术前超声图像。我们将数据分为三组如下。组 I:雌激素受体±,组 II:孕激素受体±,组 III:人表皮生长因子受体 2±。使用单因素和多因素逻辑回归分析来分析这些组中与生物标志物相关的临床和超声特征。然后基于多因素回归分析的结果建立预测人表皮生长因子受体 2 阳性亚型的模型,并使用受试者工作特征曲线下面积、准确性、敏感度、特异度来评估其效能。

结果

在训练集中,人表皮生长因子受体 2 阳性亚型占 138 例(11.8%),在测试集中占 51 例(10.1%)。多因素回归分析显示,年龄≤50 岁是孕激素受体阳性的独立预测因素(p=0.007),而在后增强是孕激素受体阳性的负预测因素(p=0.013)在组 II 中;可触及腋窝淋巴结、圆形、不规则形状和钙化是组 III 中人表皮生长因子受体-2 阳性的独立预测因素(p=0.001,p=0.007,p=0.010,p<0.001)。在组 I 中,形状是与雌激素受体状态相关的唯一因素在单因素分析中(p<0.05)。在训练集和测试集中,预测人表皮生长因子受体 2 阳性乳腺癌的模型的受试者工作特征曲线下面积、准确性、敏感度、特异度分别为 0.697、60.14%、72.46%、58.49%和 0.725、72.06%、64.71%、72.89%。

结论

本研究建立了一种预测人表皮生长因子受体 2 阳性亚型的模型,其性能中等。结果表明,临床和超声特征与生物标志物显著相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8921/8641182/559043f46a04/12880_2021_714_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验