Suppr超能文献

综合分析鉴定原发性骨关节炎中的转录因子,并构建新型 miRNA 调控网络。

Identification of transcription factors and construction of a novel miRNA regulatory network in primary osteoarthritis by integrated analysis.

机构信息

Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, P. R. China.

Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, P. R. China.

出版信息

BMC Musculoskelet Disord. 2021 Dec 2;22(1):1008. doi: 10.1186/s12891-021-04894-2.

Abstract

BACKGROUNDS

As osteoarthritis (OA) disease-modifying therapies are not available, novel therapeutic targets need to be discovered and prioritized. Here, we aim to identify miRNA signatures in patients to fully elucidate regulatory mechanism of OA pathogenesis and advance in basic understanding of the genetic etiology of OA.

METHODS

Six participants (3 OA and 3 controls) were recruited and serum samples were assayed through RNA sequencing (RNA-seq). And, RNA-seq dataset was analysed to identify genes, pathways and regulatory networks dysregulated in OA. The overlapped differentially expressed microRNAs (DEMs) were further screened in combination with the microarray dataset GSE143514. The expression levels of candidate miRNAs were further validated by quantitative real-time PCR (qRT-PCR) based on the GEO dataset (GSE114007).

RESULTS

Serum samples were sequenced interrogating 382 miRNAs. After screening of independent samples and GEO database, the two comparison datasets shared 19 overlapped candidate micRNAs. Of these, 9 up-regulated DEMs and 10 down-regulated DEMs were detected, respectively. There were 236 target genes for up-regulated DEMs and 400 target genes for those down-regulated DEMs. For up-regulated DEMs, the top 10 hub genes were KRAS, NRAS, CDC42, GDNF, SOS1, PIK3R3, GSK3B, IRS2, GNG12, and PRKCA; for down-regulated DEMs, the top 10 hub genes were NR3C1, PPARGC1A, SUMO1, MEF2C, FOXO3, PPP1CB, MAP2K1, RARA, RHOC, CDC23, and CREB3L2. Mir-584-5p-KRAS, mir-183-5p-NRAS, mir-4435-PIK3R3, and mir-4435-SOS1 were identified as four potential regulatory pathways by integrated analysis.

CONCLUSIONS

We have integrated differential expression data to reveal putative genes and detected four potential miRNA-target gene pathways through bioinformatics analysis that represent new mediators of abnormal gene expression and promising therapeutic targets in OA.

摘要

背景

由于骨关节炎(OA)疾病修饰疗法不可用,因此需要发现和优先考虑新的治疗靶点。在这里,我们旨在确定患者中的 miRNA 特征,以充分阐明 OA 发病机制的调节机制,并深入了解 OA 的遗传病因学。

方法

招募了 6 名参与者(3 名 OA 和 3 名对照),并通过 RNA 测序(RNA-seq)对血清样本进行了检测。并且,通过 RNA-seq 数据分析,确定 OA 中失调的基因、途径和调控网络。结合 microarray 数据集 GSE143514 进一步筛选重叠差异表达 microRNA(DEM)。候选 miRNA 的表达水平通过基于 GEO 数据集(GSE114007)的定量实时 PCR(qRT-PCR)进一步验证。

结果

对 382 个 miRNA 进行了测序分析血清样本。在筛选独立样本和 GEO 数据库后,两个比较数据集共享了 19 个重叠的候选 micRNA。其中,分别检测到 9 个上调的 DEM 和 10 个下调的 DEM。上调的 DEM 有 236 个靶基因,下调的 DEM 有 400 个靶基因。对于上调的 DEM,前 10 个 hub 基因是 KRAS、NRAS、CDC42、GDNF、SOS1、PIK3R3、GSK3B、IRS2、GNG12 和 PRKCA;对于下调的 DEM,前 10 个 hub 基因是 NR3C1、PPARGC1A、SUMO1、MEF2C、FOXO3、PPP1CB、MAP2K1、RARA、RHOC、CDC23 和 CREB3L2。通过综合分析,确定了 miR-584-5p-KRAS、miR-183-5p-NRAS、miR-4435-PIK3R3 和 miR-4435-SOS1 这四个潜在的调控途径。

结论

我们通过整合差异表达数据来揭示可能的基因,并通过生物信息学分析检测到四个潜在的 miRNA-靶基因途径,这些途径代表了 OA 中异常基因表达的新介质和有前途的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b53a/8641180/4e1e7f87d576/12891_2021_4894_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验