文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

动态前列腺癌转录组分析描绘了疾病进展的轨迹。

Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression.

机构信息

Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI, 6500, Switzerland.

Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, 20156, Milano, Italy.

出版信息

Nat Commun. 2021 Dec 2;12(1):7033. doi: 10.1038/s41467-021-26840-5.


DOI:10.1038/s41467-021-26840-5
PMID:34857732
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8640014/
Abstract

Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory - reverts tumor progression and macrophage polarization. Finally, a user-friendly web-resource is provided enabling the investigation of dynamic transcriptional perturbations linked to disease progression.

摘要

全面的基因组研究已经描绘出与大多数癌症疾病进展相关的关键驱动突变。然而,由于跨研究分析的偏差,相应的转录变化在很大程度上仍然难以捉摸。在这里,我们克服了这些障碍,生成了一个全面的前列腺癌转录组图谱,以定性和定量的方式描述了肿瘤进展的路线图。大多数癌症都遵循一个统一的轨迹,其特征是多梳抑制复合物 2、G2-M 检查点和 M2 巨噬细胞极化的上调。使用患者来源的异种移植模型,我们对我们的观察结果进行了功能验证,并增加了单细胞分辨率。由此,我们表明肿瘤进展是通过转录适应发生的,而不是选择预先存在的癌细胞簇。此外,我们在单细胞水平上确定了 EZH2 抑制(沿着轨迹上调最多的基因)如何逆转肿瘤进展和巨噬细胞极化。最后,提供了一个用户友好的网络资源,用于研究与疾病进展相关的动态转录扰动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/11d0e13f221d/41467_2021_26840_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/4659b0970775/41467_2021_26840_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/380987c2e448/41467_2021_26840_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/260f6f13509e/41467_2021_26840_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/11d0e13f221d/41467_2021_26840_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/4659b0970775/41467_2021_26840_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/380987c2e448/41467_2021_26840_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/260f6f13509e/41467_2021_26840_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8c/8640014/11d0e13f221d/41467_2021_26840_Fig4_HTML.jpg

相似文献

[1]
Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression.

Nat Commun. 2021-12-2

[2]
Cancer-Derived Exosomal LINC01615 Induces M2 Polarization of Tumor-Associated Macrophages via RBMX-EZH2 Axis to Promote Colorectal Cancer Progression.

Int J Nanomedicine. 2025-6-11

[3]
Interventions for central serous chorioretinopathy: a network meta-analysis.

Cochrane Database Syst Rev. 2025-6-16

[4]
Hypoxia-activated XBP1s recruits HDAC2-EZH2 to engage epigenetic suppression of ΔNp63α expression and promote breast cancer metastasis independent of HIF1α.

Cell Death Differ. 2024-4

[5]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[6]
Stakeholders' perceptions and experiences of factors influencing the commissioning, delivery, and uptake of general health checks: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2025-3-20

[7]
Interventions for fertility preservation in women with cancer undergoing chemotherapy.

Cochrane Database Syst Rev. 2025-6-19

[8]
Targeting S6K/NFκB/SQSTM1/Polθ signaling to suppress radiation resistance in prostate cancer.

Cancer Lett. 2024-8-10

[9]
Aural toilet (ear cleaning) for chronic suppurative otitis media.

Cochrane Database Syst Rev. 2025-6-9

[10]
The rise and global spread of IMP carbapenemases (1996-2023): a genomic epidemiology study.

medRxiv. 2025-5-26

引用本文的文献

[1]
Integrated control of cancer stemness by σ receptor in advanced prostate cancer.

Oncogene. 2025-9-2

[2]
Enhanced NIR-II Nanoparticle Probe for PSMA-Targeted Molecular Imaging and Prostate Cancer Diagnosis.

Int J Nanomedicine. 2025-8-9

[3]
NKX2-1 drives neuroendocrine transdifferentiation of prostate cancer via epigenetic and 3D chromatin remodeling.

Nat Genet. 2025-7-21

[4]
Temporal GeneTerrain: advancing precision medicine through dynamic gene expression visualization.

Front Bioinform. 2025-6-18

[5]
Increasing Stemness Drives Prostate Cancer Progression, Plasticity, Therapy Resistance and Poor Patient Survival.

bioRxiv. 2025-6-5

[6]
Androgen receptor-mediated assisted loading of the glucocorticoid receptor modulates transcriptional responses in prostate cancer cells.

Genome Res. 2025-8-1

[7]
The anti-diabetic PPARγ agonist Pioglitazone inhibits cell proliferation and induces metabolic reprogramming in prostate cancer.

Mol Cancer. 2025-5-5

[8]
Combining Spatial Transcriptomics, Pseudotime, and Machine Learning Enables Discovery of Biomarkers for Prostate Cancer.

Cancer Res. 2025-7-2

[9]
Multi-omics analysis constructs a novel neuroendocrine prostate cancer classifier and classification system.

Sci Rep. 2025-4-22

[10]
Computational Identification and Validation of Metabolic Cell Death-Related Prognostic Biomarkers for Personalized Treatment Strategies in Prostate Cancer.

Cell Biochem Biophys. 2025-4-11

本文引用的文献

[1]
Patient-derived xenografts and organoids model therapy response in prostate cancer.

Nat Commun. 2021-2-18

[2]
Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer.

Nat Commun. 2021-2-2

[3]
Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity.

Nat Commun. 2020-11-3

[4]
Dual targeting of EZH2 and androgen receptor as a novel therapy for castration-resistant prostate cancer.

Toxicol Appl Pharmacol. 2020-10-1

[5]
Prostate cancer reactivates developmental epigenomic programs during metastatic progression.

Nat Genet. 2020-7-20

[6]
Patterns of stemness-associated markers in the development of castration-resistant prostate cancer.

Prostate. 2020-7-6

[7]
Metastatic Hormone-sensitive Prostate Cancer: Current Perspective on the Evolving Therapeutic Landscape.

Onco Targets Ther. 2020-4-29

[8]
Regenerative potential of prostate luminal cells revealed by single-cell analysis.

Science. 2020-5-1

[9]
STAT3-dependent analysis reveals PDK4 as independent predictor of recurrence in prostate cancer.

Mol Syst Biol. 2020-4

[10]
Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx.

Methods Mol Biol. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索