Suppr超能文献

使用 CIBERSORTx 分析批量组织中的细胞类型丰度和表达。

Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx.

机构信息

Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.

出版信息

Methods Mol Biol. 2020;2117:135-157. doi: 10.1007/978-1-0716-0301-7_7.

Abstract

CIBERSORTx is a suite of machine learning tools for the assessment of cellular abundance and cell type-specific gene expression patterns from bulk tissue transcriptome profiles. With this framework, single-cell or bulk-sorted RNA sequencing data can be used to learn molecular signatures of distinct cell types from a small collection of biospecimens. These signatures can then be repeatedly applied to characterize cellular heterogeneity from bulk tissue transcriptomes without physical cell isolation. In this chapter, we provide a detailed primer on CIBERSORTx and demonstrate its capabilities for high-throughput profiling of cell types and cellular states in normal and neoplastic tissues.

摘要

CIBERSORTx 是一套用于从组织转录组图谱中评估细胞丰度和细胞类型特异性基因表达模式的机器学习工具。使用这个框架,可以使用单细胞或批量分选的 RNA 测序数据,从小样本生物标本中学习不同细胞类型的分子特征。然后,可以将这些特征重复应用于对无物理细胞分离的组织转录组进行细胞异质性分析。在本章中,我们提供了 CIBERSORTx 的详细指南,并展示了其在正常和肿瘤组织中进行高通量细胞类型和细胞状态分析的能力。

相似文献

1
Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx.
Methods Mol Biol. 2020;2117:135-157. doi: 10.1007/978-1-0716-0301-7_7.
2
Determining cell type abundance and expression from bulk tissues with digital cytometry.
Nat Biotechnol. 2019 Jul;37(7):773-782. doi: 10.1038/s41587-019-0114-2. Epub 2019 May 6.
3
Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference.
Genet Epidemiol. 2022 Dec;46(8):615-628. doi: 10.1002/gepi.22494. Epub 2022 Jul 5.
4
Data Analysis in Single-Cell Transcriptome Sequencing.
Methods Mol Biol. 2018;1754:311-326. doi: 10.1007/978-1-4939-7717-8_18.
5
HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD).
BMC Med Genomics. 2023 Oct 31;16(Suppl 2):272. doi: 10.1186/s12920-023-01674-w.
6
Single-Cell Transcriptomic Analysis of Tumor Heterogeneity.
Trends Cancer. 2018 Apr;4(4):264-268. doi: 10.1016/j.trecan.2018.02.003. Epub 2018 Mar 9.
8
Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing.
Methods Mol Biol. 2019;1935:25-43. doi: 10.1007/978-1-4939-9057-3_3.
10
Use of SuperCT for Enhanced Characterization of Single-Cell Transcriptomic Profiles.
Methods Mol Biol. 2020;2117:169-177. doi: 10.1007/978-1-0716-0301-7_9.

引用本文的文献

3
Characterization of Muscle Tissue Cell Diversity and Clinical Implications in Idiopathic Inflammatory Myopathy.
J Cachexia Sarcopenia Muscle. 2025 Oct;16(5):e70043. doi: 10.1002/jcsm.70043.
5
Development of a host-signature-based machine learning model to diagnose bacterial and viral infections in febrile children.
Front Pediatr. 2025 Aug 6;13:1608812. doi: 10.3389/fped.2025.1608812. eCollection 2025.
7
Identification of a hypoxia-related gene signature associated with childhood asthma.
Genes Genomics. 2025 Aug 18. doi: 10.1007/s13258-025-01665-4.
8
Tracing the evolution of sequencing into the era of genomic medicine.
Nat Rev Genet. 2025 Aug 15. doi: 10.1038/s41576-025-00884-5.
9
ARID1A mutation drives gastric tumorigenesis via activating type 2 immune dominant microenvironment.
iScience. 2025 Jul 15;28(8):113117. doi: 10.1016/j.isci.2025.113117. eCollection 2025 Aug 15.
10
Tumor-associated macrophages: potential role in skeletal involvement in classic Hodgkin lymphoma.
J Pathol Clin Res. 2025 Jul;11(4):e70038. doi: 10.1002/2056-4538.70038.

本文引用的文献

1
Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data.
F1000Res. 2019 Mar 15;8. doi: 10.12688/f1000research.18490.3. eCollection 2019.
2
ascend: R package for analysis of single-cell RNA-seq data.
Gigascience. 2019 Aug 1;8(8). doi: 10.1093/gigascience/giz087.
3
Efficient integration of heterogeneous single-cell transcriptomes using Scanorama.
Nat Biotechnol. 2019 Jun;37(6):685-691. doi: 10.1038/s41587-019-0113-3. Epub 2019 May 6.
4
Determining cell type abundance and expression from bulk tissues with digital cytometry.
Nat Biotechnol. 2019 Jul;37(7):773-782. doi: 10.1038/s41587-019-0114-2. Epub 2019 May 6.
5
Cell composition analysis of bulk genomics using single-cell data.
Nat Methods. 2019 Apr;16(4):327-332. doi: 10.1038/s41592-019-0355-5. Epub 2019 Mar 18.
6
Bulk tissue cell type deconvolution with multi-subject single-cell expression reference.
Nat Commun. 2019 Jan 22;10(1):380. doi: 10.1038/s41467-018-08023-x.
7
Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma.
Cell. 2019 Feb 7;176(4):775-789.e18. doi: 10.1016/j.cell.2018.11.043. Epub 2018 Dec 27.
8
Single-cell RNA-Seq of follicular lymphoma reveals malignant B-cell types and coexpression of T-cell immune checkpoints.
Blood. 2019 Mar 7;133(10):1119-1129. doi: 10.1182/blood-2018-08-862292. Epub 2018 Dec 27.
9
Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration.
iScience. 2018 Nov 30;9:451-460. doi: 10.1016/j.isci.2018.10.028. Epub 2018 Nov 2.
10
A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade.
Cell. 2018 Nov 1;175(4):984-997.e24. doi: 10.1016/j.cell.2018.09.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验