Suppr超能文献

一种用于测量比率荧光强度和磷光寿命的多功能多通道仪器。

A Versatile Multichannel Instrument for Measurement of Ratiometric Fluorescence Intensity and Phosphorescence Lifetime.

作者信息

Zavareh Amir Tofighi, Ko Brian, Roberts Jason, Elahi Sakib, McShane Michael J

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.

出版信息

IEEE Access. 2021;9:103835-103849. doi: 10.1109/access.2021.3098777. Epub 2021 Jul 21.

Abstract

Optical biosensing is being actively investigated for minimally-invasive monitoring of key biomarkers both and . However, typical benchtop instruments are not portable and are not well suited to high-throughput, real-time analysis. This paper presents a versatile multichannel instrument for measurement of emission intensity and lifetime values arising from luminescent biosensor materials. A detailed design description of the opto-electronic hardware as well as the control software is provided, elaborating a flexible, user-configurable system that may be customized or duplicated for a wide range of applications. This article presents experimental measurements that prove the and functionality of the system. Such tools may be adopted for many research and development purposes, including evaluation of new biosensor materials, and may also serve as prototypes for future miniaturized handheld or wearable devices.

摘要

光学生物传感正在积极研究中,用于对体内和体外关键生物标志物进行微创监测。然而,典型的台式仪器不便于携带,也不太适合高通量实时分析。本文介绍了一种多功能多通道仪器,用于测量发光生物传感器材料产生的发射强度和寿命值。提供了光电硬件以及控制软件的详细设计描述,阐述了一个灵活的、用户可配置的系统,该系统可针对广泛的应用进行定制或复制。本文给出了实验测量结果,证明了该系统的体内和体外功能。此类工具可用于许多研发目的,包括评估新型生物传感器材料,还可作为未来小型手持或可穿戴设备的原型。

相似文献

1
A Versatile Multichannel Instrument for Measurement of Ratiometric Fluorescence Intensity and Phosphorescence Lifetime.
IEEE Access. 2021;9:103835-103849. doi: 10.1109/access.2021.3098777. Epub 2021 Jul 21.
2
Versatile common instrumentation for optical detection of pH and dissolved oxygen.
Rev Sci Instrum. 2015 Jul;86(7):074302. doi: 10.1063/1.4926542.
3
Wearable multiplexed biosensor system toward continuous monitoring of metabolites.
Biosens Bioelectron. 2020 Apr 1;153:112038. doi: 10.1016/j.bios.2020.112038. Epub 2020 Jan 18.
4
Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
Acc Chem Res. 2019 Feb 19;52(2):297-306. doi: 10.1021/acs.accounts.8b00555. Epub 2019 Jan 28.
5
Wireless implantable electronic platform for chronic fluorescent-based biosensors.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1846-54. doi: 10.1109/TBME.2011.2123098. Epub 2011 Mar 7.
6
Microneedle-Based Glucose Sensor Platform: From to Wearable Point-of-Care Testing Systems.
Biosensors (Basel). 2022 Aug 6;12(8):606. doi: 10.3390/bios12080606.
7
Optical glucose biosensor built-in disposable strips and wearable electronic devices.
Biosens Bioelectron. 2021 Aug 1;185:113237. doi: 10.1016/j.bios.2021.113237. Epub 2021 Apr 20.
8
Geometry design for a fully insertable glucose biosensor with multimodal optical readout.
J Biomed Opt. 2022 Nov;27(11). doi: 10.1117/1.JBO.27.11.117001.
9
Software Packages and Tools for the Analysis of Continuous Glucose Monitoring Data.
Diabetes Technol Ther. 2023 Jan;25(1):69-85. doi: 10.1089/dia.2022.0237. Epub 2022 Nov 4.

引用本文的文献

1
NIR Phosphorescent Oxygen Sensors in Natural Hydrogel Matrices.
bioRxiv. 2025 May 22:2025.05.17.654688. doi: 10.1101/2025.05.17.654688.
2
Insertable Biomaterial-Based Multianalyte Barcode Sensor toward Continuous Monitoring of Glucose and Oxygen.
ACS Sens. 2024 Nov 22;9(11):6060-6070. doi: 10.1021/acssensors.4c01926. Epub 2024 Nov 4.
3
Insertable Glucose Sensor Using a Compact and Cost-Effective Phosphorescence Lifetime Imager and Machine Learning.
ACS Nano. 2024 Aug 27;18(34):23365-23379. doi: 10.1021/acsnano.4c06527. Epub 2024 Aug 13.
6
NIR Luminescent Oxygen-Sensing Nanoparticles for Continuous Glucose and Lactate Monitoring.
Biosensors (Basel). 2023 Jan 14;13(1):141. doi: 10.3390/bios13010141.

本文引用的文献

1
2
Recent Progress of Biomarker Detection Sensors.
Research (Wash D C). 2020 Oct 15;2020:7949037. doi: 10.34133/2020/7949037. eCollection 2020.
4
Recent Progress in Optical Sensors for Biomedical Diagnostics.
Micromachines (Basel). 2020 Mar 30;11(4):356. doi: 10.3390/mi11040356.
5
An Optical Urate Biosensor Based on Urate Oxidase and Long-Lifetime Metalloporphyrins.
Sensors (Basel). 2020 Feb 11;20(4):959. doi: 10.3390/s20040959.
7
Comparative accuracy of optical sensor-based wearable system for non-invasive measurement of blood glucose concentration.
Clin Biochem. 2019 Mar;65:15-20. doi: 10.1016/j.clinbiochem.2018.12.014. Epub 2019 Jan 7.
8
Wearable and Implantable Sensors for Biomedical Applications.
Annu Rev Anal Chem (Palo Alto Calif). 2018 Jun 12;11(1):127-146. doi: 10.1146/annurev-anchem-061417-125956. Epub 2018 Feb 28.
9
Theory and Calculation of the Phosphorescence Phenomenon.
Chem Rev. 2017 May 10;117(9):6500-6537. doi: 10.1021/acs.chemrev.7b00060. Epub 2017 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验