Liu Zhengmao, Liang Lixin, Xiao Dong, Ji Yi, Zhao Zhenchao, Xu Jun, Hou Guangjin
State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Phys Chem Chem Phys. 2021 Dec 15;23(48):27244-27252. doi: 10.1039/d1cp04247e.
Anion-exchangeable Y(OH)X·HO (LYH-X, X = monovalent anions, ≈ 1.5) materials are an ideal platform for incorporating the unique properties of layered metal hydroxides and rare-earth (RE) ions, and thus have exhibited promising prospects for various applications. To further improve the performance of LYH-X and related functional materials, their structure-property relationships must be explored. However, due to the intrinsic felxibility, extracting the local structural details of these materials is particularly challenging. In this work, we utilized a combined approach of Y solid-state NMR (ssNMR) spectroscopy and density functional theory (DFT) calculations to reveal the response of Y chemical shift anisotropy (CSA) in LYH-X to the structural changes including a small displacement of cationic yttrium hydroxide layers and intercalated anions. Such subtle structural changes are often associated with dehydration/rehydration, anion-exchange, exfoliation, and the self-assembly process of LYH-X and related functional materials, which are exceedingly difficult to detect using other techniques. The principal components of Y CSA show a larger variation range than isotropic chemical shifts, making CSA a more sensitive probe. In addition, it is found that the response of Y CSA to structural changes is distinct for Y sites with different local coordination environments, opening great opportunities to analyze each Y site within these materials. All these observations suggest that the strategy involving both experimental (Y ssNMR) and theoretical (DFT) approaches can be utilized to extract previously unavailable ultrafine structural information of LYH-X and related materials, and provide fruitful insights into their thorough structure-property relationships.
可阴离子交换的Y(OH)X·HO(LYH-X,X = 单价阴离子,≈ 1.5)材料是结合层状金属氢氧化物和稀土(RE)离子独特性质的理想平台,因此在各种应用中展现出了广阔前景。为进一步提高LYH-X及相关功能材料的性能,必须探索它们的结构-性能关系。然而,由于其固有的灵活性,提取这些材料的局部结构细节极具挑战性。在这项工作中,我们采用了Y固态核磁共振(ssNMR)光谱和密度泛函理论(DFT)计算相结合的方法,以揭示LYH-X中Y化学位移各向异性(CSA)对结构变化的响应,这些结构变化包括阳离子氢氧化钇层和插层阴离子的微小位移。这种细微的结构变化通常与LYH-X及相关功能材料的脱水/再水化、阴离子交换、剥离和自组装过程相关,而使用其他技术极难检测到。Y CSA的主成分显示出比各向同性化学位移更大的变化范围,使得CSA成为更灵敏的探针。此外,发现Y CSA对结构变化的响应在具有不同局部配位环境的Y位点上是不同的,这为分析这些材料中的每个Y位点提供了绝佳机会。所有这些观察结果表明,涉及实验(Y ssNMR)和理论(DFT)方法的策略可用于提取LYH-X及相关材料以前无法获得的超细结构信息,并为其全面的结构-性能关系提供丰富的见解。