Chu Anjun, He Peiru, Thompson James K, Rey Ana Maria
JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA.
Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA.
Phys Rev Lett. 2021 Nov 19;127(21):210401. doi: 10.1103/PhysRevLett.127.210401.
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially delocalized Wannier-Stark states, it is possible to cancel the undesirable inhomogeneities arising from the mismatch between the lattice and cavity fields and to generate spin squeezed states via a uniform one-axis twisting model. The quantum enhanced sensitivity of the states is combined with the subsequent application of a compound pulse sequence that allows us to separate atoms by several lattice sites. This, together with the capability to load small atomic clouds in the lattice at micrometric distances from a surface, make our setup ideal for sensing short-range forces. We show that for arrays of 10^{4} atoms, our protocol can reduce the required averaging time by a factor of 10 compared to unentangled lattice-based interferometers after accounting for primary sources of decoherence.
我们提出了一种用于重力测量和力传感的量子增强干涉测量协议,该协议使用驻波腔支持的光学晶格中的冷原子。通过将原子加载到部分离域的万尼尔 - 斯塔克态中,可以消除由于晶格场和腔场不匹配而产生的不良不均匀性,并通过均匀的单轴扭转模型生成自旋压缩态。这些态的量子增强灵敏度与随后应用的复合脉冲序列相结合,该序列使我们能够将原子分隔几个晶格位置。这一点,再加上在距表面微米级距离处的晶格中加载小原子云的能力,使得我们的装置非常适合用于探测短程力。我们表明,对于由(10^{4})个原子组成的阵列,在考虑主要退相干源之后,与基于非纠缠晶格的干涉仪相比,我们的协议可以将所需的平均时间减少(10)倍。