Schach Patrik, Friedrich Alexander, Williams Jason R, Schleich Wolfgang P, Giese Enno
Technische Universität Darmstadt, Fachbereich Physik, Institut für Angewandte Physik, Schlossgartenstr. 7, D-64289 Darmstadt, Germany.
Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
EPJ Quantum Technol. 2022;9(1):20. doi: 10.1140/epjqt/s40507-022-00140-3. Epub 2022 Aug 2.
We examine the prospects of utilizing matter-wave Fabry-Pérot interferometers for enhanced inertial sensing applications. Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations: (a) a transmission setup, where the initial wave packet is transmitted through the cavity and (b) an out-tunneling scheme with intra-cavity generated initial states lacking a classical counterpart. We perform numerical simulations of the complete dynamics of the quantum wave packet, investigate the tunneling through a matter-wave cavity formed by realistic optical potentials and determine the impact of interactions between atoms. As a consequence we estimate the prospective sensitivities to inertial forces for both proposed configurations and show their feasibility for serving as inertial sensors.
我们研究了利用物质波法布里-珀罗干涉仪用于增强惯性传感应用的前景。我们的研究探索了这种基于隧穿的传感器在两种配置下测量加速度的情况:(a) 一种透射设置,其中初始波包透射过腔;(b) 一种外隧穿方案,腔内产生的初始态缺乏经典对应物。我们对量子波包的完整动力学进行了数值模拟,研究了通过由实际光学势形成的物质波腔的隧穿,并确定了原子间相互作用的影响。因此,我们估计了两种提议配置对惯性力的预期灵敏度,并展示了它们作为惯性传感器的可行性。