Laboratoire des Sciences du Numérique, LS2N UMR CNRS 6004, Université de Nantes, Nantes, France.
Laboratoire de Mathématiques Appliquées, FR CNRS 3335, Université Le Havre Normandie, Le Havre, France.
J Math Biol. 2021 Dec 3;83(6-7):66. doi: 10.1007/s00285-021-01696-x.
We present an innovative mathematical model for studying the dynamics of forest ecosystems. Our model is determined by an age-structured reaction-diffusion-advection system in which the roles of the water resource and of the atmospheric activity are considered. The model is abstract but constructed in such a manner that it can be applied to real-world forest areas; thus it allows to establish an infinite number of scenarios for testing the robustness and resilience of forest ecosystems to anthropic actions or to climate change. We establish the well-posedness of the reaction-diffusion-advection model by using the method of characteristics and by reducing the initial system to a reaction-diffusion problem. The existence and stability of stationary homogeneous and stationary heterogeneous solutions are investigated, so as to prove that the model is able to reproduce relevant equilibrium states of the forest ecosystem. We show that the model fits with the principle of almost uniform precipitation over forested areas and of exponential decrease of precipitation over deforested areas. Furthermore, we present a selection of numerical simulations for an abstract forest ecosystem, in order to analyze the stability of the steady states, to investigate the impact of anthropic perturbations such as deforestation and to explore the effects of climate change on the dynamics of the forest ecosystem.
我们提出了一个用于研究森林生态系统动力学的创新数学模型。我们的模型由一个具有年龄结构的反应扩散-对流系统决定,其中考虑了水资源和大气活动的作用。该模型是抽象的,但以这样一种方式构建,即它可以应用于现实世界中的森林区域;因此,它可以建立无数的场景来测试森林生态系统对人为活动或气候变化的鲁棒性和弹性。我们使用特征方法并将初始系统简化为一个反应扩散问题,从而证明了反应扩散-对流模型的适定性。我们研究了稳定的均匀和非均匀解的存在性和稳定性,以证明该模型能够再现森林生态系统的相关平衡状态。我们表明,该模型符合森林地区降水几乎均匀和森林砍伐地区降水呈指数下降的原则。此外,我们还展示了一个抽象森林生态系统的数值模拟选择,以分析稳定状态的稳定性,研究如森林砍伐等人为干扰对其的影响,并探索气候变化对森林生态系统动态的影响。