Suppr超能文献

概率布尔控制网络中的最大似然状态估计器

Maximum-Likelihood State Estimators in Probabilistic Boolean Control Networks.

作者信息

Toyoda Mitsuru, Wu Yuhu

出版信息

IEEE Trans Cybern. 2023 Jun;53(6):3414-3427. doi: 10.1109/TCYB.2021.3127880. Epub 2023 May 17.

Abstract

This study addresses state estimation problems for probabilistic Boolean control networks (PBCNs). Compared with deterministic Boolean networks, PBCNs have the stochastic switching in logical update functions in the state equation. Consequently, statistical analysis is required to estimate unavailable states, which induces an optimization problem called maximum-likelihood estimation. This article mainly focuses on two scenarios: 1) state estimation from partially measured state and 2) state estimation from output data, meaning observer design. The resulting optimization problems are solved using efficient algorithms based on dynamic programming. Concurrently, Dijkstra-type algorithms, which solve equivalent shortest path problems, are also proposed using best-first search. Furthermore, both the proposed algorithms derive novel observer design methods for PBCNs. The proposed algorithms are evaluated with practical estimation problems aiming to the sensor reduction and applied to gene regulatory networks of apoptosis and Lac operon.

摘要

本研究解决了概率布尔控制网络(PBCN)的状态估计问题。与确定性布尔网络相比,PBCN在状态方程的逻辑更新函数中具有随机切换。因此,需要进行统计分析来估计不可用状态,这引发了一个称为最大似然估计的优化问题。本文主要关注两种情况:1)从部分测量状态进行状态估计和2)从输出数据进行状态估计,即观测器设计。使用基于动态规划的高效算法来解决由此产生的优化问题。同时,还提出了使用最佳优先搜索来解决等效最短路径问题的迪杰斯特拉型算法。此外,所提出的两种算法都推导出了用于PBCN的新颖观测器设计方法。通过旨在减少传感器的实际估计问题对所提出的算法进行了评估,并将其应用于细胞凋亡和乳糖操纵子的基因调控网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验