Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States.
Department of Child & Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany.
Drug Alcohol Depend. 2022 Jan 1;230:109185. doi: 10.1016/j.drugalcdep.2021.109185. Epub 2021 Nov 25.
Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention.
Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence.
The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014).
Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.
尼古丁和非法兴奋剂都是非常容易使人上瘾的物质。虽然已经频繁报道了灰质与兴奋剂依赖之间的关联,但白质相关性受到的关注较少。
ENIGMA-Addiction 联盟的 11 个国际站点提供了来自可卡因依赖者(n=147)、甲基苯丙胺依赖者(n=132)和尼古丁依赖者(n=189)以及非依赖对照者(n=333)的数据。我们比较了 20 对双侧束的各向异性分数(FA)、轴向扩散系数(AD)、径向扩散系数(RD)和平均扩散系数(MD)。此外,我们比较了各种机器学习算法在基于大脑的兴奋剂依赖分类中的表现。
可卡因和甲基苯丙胺组在几个联合、连合和投射白质束中表现出较低的区域 FA 和较高的 RD。甲基苯丙胺依赖组还表现出较低的区域 AD。尼古丁组仅在前内囊前肢表现出较低的 FA 和较高的 RD。表现最好的机器学习算法是支持向量机(SVM)。SVM 成功地将可卡因依赖者(AUC=0.70,p<0.001)和甲基苯丙胺依赖者(AUC=0.71,p<0.001)与非依赖对照组区分开来。与尼古丁依赖相关的分类结果适度(AUC=0.62,p=0.014)。
兴奋剂依赖与与成瘾相关的束内 FA 紊乱有关。白质差异的多元模式足以识别兴奋剂依赖者,尤其是可卡因和甲基苯丙胺依赖者。