Suppr超能文献

依赖可卡因、冰毒和尼古丁者的脑白质微观结构差异:来自 ENIGMA-Addiction 工作组的研究结果。

White matter microstructure differences in individuals with dependence on cocaine, methamphetamine, and nicotine: Findings from the ENIGMA-Addiction working group.

机构信息

Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States.

Department of Child & Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany.

出版信息

Drug Alcohol Depend. 2022 Jan 1;230:109185. doi: 10.1016/j.drugalcdep.2021.109185. Epub 2021 Nov 25.

Abstract

BACKGROUND

Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention.

METHODS

Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence.

RESULTS

The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014).

CONCLUSIONS

Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.

摘要

背景

尼古丁和非法兴奋剂都是非常容易使人上瘾的物质。虽然已经频繁报道了灰质与兴奋剂依赖之间的关联,但白质相关性受到的关注较少。

方法

ENIGMA-Addiction 联盟的 11 个国际站点提供了来自可卡因依赖者(n=147)、甲基苯丙胺依赖者(n=132)和尼古丁依赖者(n=189)以及非依赖对照者(n=333)的数据。我们比较了 20 对双侧束的各向异性分数(FA)、轴向扩散系数(AD)、径向扩散系数(RD)和平均扩散系数(MD)。此外,我们比较了各种机器学习算法在基于大脑的兴奋剂依赖分类中的表现。

结果

可卡因和甲基苯丙胺组在几个联合、连合和投射白质束中表现出较低的区域 FA 和较高的 RD。甲基苯丙胺依赖组还表现出较低的区域 AD。尼古丁组仅在前内囊前肢表现出较低的 FA 和较高的 RD。表现最好的机器学习算法是支持向量机(SVM)。SVM 成功地将可卡因依赖者(AUC=0.70,p<0.001)和甲基苯丙胺依赖者(AUC=0.71,p<0.001)与非依赖对照组区分开来。与尼古丁依赖相关的分类结果适度(AUC=0.62,p=0.014)。

结论

兴奋剂依赖与与成瘾相关的束内 FA 紊乱有关。白质差异的多元模式足以识别兴奋剂依赖者,尤其是可卡因和甲基苯丙胺依赖者。

相似文献

2
Regional differences in white matter integrity in stimulant use disorders: A meta-analysis of diffusion tensor imaging studies.
Drug Alcohol Depend. 2019 Aug 1;201:29-37. doi: 10.1016/j.drugalcdep.2019.03.023. Epub 2019 May 29.
3
Nicotine Effects on White Matter Microstructure in Young Adults.
Arch Clin Neuropsychol. 2019 Jan 24;35(1):10-21. doi: 10.1093/arclin/acy101.
4
White matter microstructure and impulsivity in methamphetamine dependence with and without a history of psychosis.
Hum Brain Mapp. 2016 Jun;37(6):2055-67. doi: 10.1002/hbm.23159. Epub 2016 Mar 3.
5
White matter integrity and cognitive performance in children with prenatal methamphetamine exposure.
Behav Brain Res. 2015 Feb 15;279:62-7. doi: 10.1016/j.bbr.2014.11.005. Epub 2014 Nov 12.
6
[The value of MR diffusion tensor imaging in assessing white matter changes in short-term methamphetamine withdrawal].
Zhonghua Yi Xue Za Zhi. 2022 Sep 20;102(35):2779-2785. doi: 10.3760/cma.j.cn112137-20220113-00091.
8
Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study.
Neuroimage. 2014 Feb 1;86:244-56. doi: 10.1016/j.neuroimage.2013.09.053. Epub 2013 Oct 1.
9
Association between white matter microstructure and cognitive function in patients with methamphetamine use disorder.
Hum Brain Mapp. 2023 Feb 1;44(2):304-314. doi: 10.1002/hbm.26020. Epub 2022 Jul 15.
10
White matter alterations and their associations with motor function in young adults born preterm with very low birth weight.
Neuroimage Clin. 2017 Oct 4;17:241-250. doi: 10.1016/j.nicl.2017.10.006. eCollection 2018.

引用本文的文献

1
The mesocorticolimbic system in stimulant use disorder.
Mol Psychiatry. 2025 Sep 10. doi: 10.1038/s41380-025-03148-0.
2
Frontal White Matter Changes and Craving Recovery in Inpatients With Heroin Use Disorder.
JAMA Netw Open. 2024 Dec 2;7(12):e2451678. doi: 10.1001/jamanetworkopen.2024.51678.
4
FRONTAL WHITE MATTER CHANGES INDICATE RECOVERY WITH INPATIENT TREATMENT IN HEROIN ADDICTION.
medRxiv. 2024 Jun 11:2024.06.10.24308719. doi: 10.1101/2024.06.10.24308719.
5
Transcranial magnetic stimulation for methamphetamine use disorder: A scoping review within the neurocircuitry model of addiction.
Psychiatry Res. 2024 Aug;338:115995. doi: 10.1016/j.psychres.2024.115995. Epub 2024 May 29.
6
Imaging neuroinflammation in individuals with substance use disorders.
J Clin Invest. 2024 Jun 3;134(11):e172884. doi: 10.1172/JCI172884.
7
Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings.
Neural Regen Res. 2024 Sep 1;19(9):1908-1918. doi: 10.4103/1673-5374.390971. Epub 2023 Dec 15.
10
The evolution of Big Data in neuroscience and neurology.
J Big Data. 2023;10(1):116. doi: 10.1186/s40537-023-00751-2. Epub 2023 Jul 10.

本文引用的文献

1
Brain Predictability toolbox: a Python library for neuroimaging-based machine learning.
Bioinformatics. 2021 Jul 12;37(11):1637-1638. doi: 10.1093/bioinformatics/btaa974.
2
Meta-analysis of brain gray matter changes in chronic smokers.
Eur J Radiol. 2020 Nov;132:109300. doi: 10.1016/j.ejrad.2020.109300. Epub 2020 Sep 24.
4
White Matter Abnormalities Based on TBSS and Its Correlation With Impulsivity Behavior of Methamphetamine Addicts.
Front Psychiatry. 2020 May 21;11:452. doi: 10.3389/fpsyt.2020.00452. eCollection 2020.
5
Machine-learning approaches to substance-abuse research: emerging trends and their implications.
Curr Opin Psychiatry. 2020 Jul;33(4):334-342. doi: 10.1097/YCO.0000000000000611.
6
7
White matter integrity alternations associated with cocaine dependence and long-term abstinence: Preliminary findings.
Behav Brain Res. 2020 Feb 3;379:112388. doi: 10.1016/j.bbr.2019.112388. Epub 2019 Nov 26.
8
Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses across 3033 individuals.
Neuropsychopharmacology. 2019 Dec;44(13):2285-2293. doi: 10.1038/s41386-019-0485-6. Epub 2019 Aug 21.
9
Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study.
Mol Psychiatry. 2020 Nov;25(11):2818-2831. doi: 10.1038/s41380-019-0450-0. Epub 2019 Jul 29.
10
Regional differences in white matter integrity in stimulant use disorders: A meta-analysis of diffusion tensor imaging studies.
Drug Alcohol Depend. 2019 Aug 1;201:29-37. doi: 10.1016/j.drugalcdep.2019.03.023. Epub 2019 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验