Suppr超能文献

脑可预测性工具包:一个基于神经影像学的机器学习的 Python 库。

Brain Predictability toolbox: a Python library for neuroimaging-based machine learning.

机构信息

Department of Psychiatry and Complex Systems, University of Vermont, Burlington, VT 05401, USA.

Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Bioinformatics. 2021 Jul 12;37(11):1637-1638. doi: 10.1093/bioinformatics/btaa974.

Abstract

SUMMARY

Brain Predictability toolbox (BPt) represents a unified framework of machine learning (ML) tools designed to work with both tabulated data (e.g. brain derived, psychiatric, behavioral and physiological variables) and neuroimaging specific data (e.g. brain volumes and surfaces). This package is suitable for investigating a wide range of different neuroimaging-based ML questions, in particular, those queried from large human datasets.

AVAILABILITY AND IMPLEMENTATION

BPt has been developed as an open-source Python 3.6+ package hosted at https://github.com/sahahn/BPt under MIT License, with documentation provided at https://bpt.readthedocs.io/en/latest/, and continues to be actively developed. The project can be downloaded through the github link provided. A web GUI interface based on the same code is currently under development and can be set up through docker with instructions at https://github.com/sahahn/BPt_app.

摘要

摘要

脑可预测性工具包 (BPt) 代表了一个统一的机器学习 (ML) 工具框架,旨在同时处理表格数据(例如大脑衍生、精神科、行为和生理变量)和神经影像学特定数据(例如大脑体积和表面)。这个软件包适用于研究各种不同的基于神经影像学的 ML 问题,特别是那些从大型人类数据集查询的问题。

可用性和实现

BPt 已作为一个开源 Python 3.6+ 软件包在 https://github.com/sahahn/BPt 上开发,遵循 MIT 许可证,文档在 https://bpt.readthedocs.io/en/latest/ 提供,并在持续积极开发中。该项目可以通过提供的 github 链接下载。一个基于相同代码的网络 GUI 界面正在开发中,可以通过在 https://github.com/sahahn/BPt_app 上的说明使用 docker 设置。

相似文献

3
HOMELETTE: a unified interface to homology modelling software.HOMELETTE:同源建模软件的统一接口。
Bioinformatics. 2022 Mar 4;38(6):1749-1751. doi: 10.1093/bioinformatics/btab866.

引用本文的文献

本文引用的文献

1
Machine learning for neuroimaging with scikit-learn.使用 scikit-learn 进行神经影像学的机器学习。
Front Neuroinform. 2014 Feb 21;8:14. doi: 10.3389/fninf.2014.00014. eCollection 2014.
2
Permutation importance: a corrected feature importance measure.排列重要性:一种修正的特征重要性度量。
Bioinformatics. 2010 May 15;26(10):1340-7. doi: 10.1093/bioinformatics/btq134. Epub 2010 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验