文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向调节性 T 细胞表达的 STAT3 增强 NK 介导的转移监测并改善胰腺导管腺癌的治疗反应。

Targeting Treg-Expressed STAT3 Enhances NK-Mediated Surveillance of Metastasis and Improves Therapeutic Response in Pancreatic Adenocarcinoma.

机构信息

Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.

Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.

出版信息

Clin Cancer Res. 2022 Mar 1;28(5):1013-1026. doi: 10.1158/1078-0432.CCR-21-2767.


DOI:10.1158/1078-0432.CCR-21-2767
PMID:34862244
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8898296/
Abstract

PURPOSE: Metastasis remains a major hurdle in treating aggressive malignancies such as pancreatic ductal adenocarcinoma (PDAC). Improving response to treatment, therefore, requires a more detailed characterization of the cellular populations involved in controlling metastatic burden. EXPERIMENTAL DESIGN: PDAC patient tissue samples were subjected to RNA sequencing analysis to identify changes in immune infiltration following radiotherapy. Genetically engineered mouse strains in combination with orthotopic tumor models of PDAC were used to characterize disease progression. Flow cytometry was used to analyze tumor infiltrating, circulating, and nodal immune populations. RESULTS: We demonstrate that although radiotherapy increases the infiltration and activation of dendritic cells (DC), it also increases the infiltration of regulatory T cells (Treg) while failing to recruit natural killer (NK) and CD8 T cells in PDAC patient tissue samples. In murine orthotopic tumor models, we show that genetic and pharmacologic depletion of Tregs and NK cells enhances and attenuates response to radiotherapy, respectively. We further demonstrate that targeted inhibition of STAT3 on Tregs results in improved control of local and distant disease progression and enhanced NK-mediated immunosurveillance of metastasis. Moreover, combination treatment of STAT3 antisense oligonucleotide (ASO) and radiotherapy invigorated systemic immune activation and conferred a survival advantage in orthotopic and metastatic tumor models. Finally, we show the response to STAT3 ASO + radiotherapy treatment is dependent on NK and DC subsets. CONCLUSIONS: Our results suggest targeting Treg-mediated immunosuppression is a critical step in mediating a response to treatment, and identifying NK cells as not only a prognostic marker of improved survival, but also as an effector population that functions to combat metastasis.

摘要

目的:转移仍然是治疗胰腺导管腺癌 (PDAC) 等侵袭性恶性肿瘤的主要障碍。因此,提高治疗反应需要更详细地描述参与控制转移负担的细胞群体。 实验设计:对 PDAC 患者组织样本进行 RNA 测序分析,以确定放疗后免疫浸润的变化。结合 PDAC 原位肿瘤模型,使用基因工程小鼠品系来描述疾病进展。流式细胞术用于分析肿瘤浸润、循环和淋巴结免疫群体。 结果:我们证明,尽管放疗增加了树突状细胞 (DC) 的浸润和激活,但它也增加了调节性 T 细胞 (Treg) 的浸润,同时未能在 PDAC 患者组织样本中招募自然杀伤 (NK) 和 CD8 T 细胞。在小鼠原位肿瘤模型中,我们表明 Treg 和 NK 细胞的遗传和药理学耗竭分别增强和减弱了对放疗的反应。我们进一步证明,Treg 上 STAT3 的靶向抑制可改善局部和远处疾病进展的控制,并增强 NK 介导的转移免疫监视。此外,STAT3 反义寡核苷酸 (ASO) 和放疗的联合治疗增强了全身免疫激活,并在原位和转移性肿瘤模型中赋予了生存优势。最后,我们表明 STAT3 ASO + 放疗治疗的反应取决于 NK 和 DC 亚群。 结论:我们的结果表明,靶向 Treg 介导的免疫抑制是介导治疗反应的关键步骤,并将 NK 细胞确定为不仅是改善生存的预后标志物,而且是发挥作用以对抗转移的效应细胞群体。

相似文献

[1]
Targeting Treg-Expressed STAT3 Enhances NK-Mediated Surveillance of Metastasis and Improves Therapeutic Response in Pancreatic Adenocarcinoma.

Clin Cancer Res. 2022-3-1

[2]
DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma.

J Immunother Cancer. 2021-11

[3]
Response to radiotherapy in pancreatic ductal adenocarcinoma is enhanced by inhibition of myeloid-derived suppressor cells using STAT3 anti-sense oligonucleotide.

Cancer Immunol Immunother. 2021-4

[4]
TNFR2 blockade promotes antitumoral immune response in PDAC by targeting activated Treg and reducing T cell exhaustion.

J Immunother Cancer. 2024-11-19

[5]
Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer.

Gastroenterology. 2015-8-7

[6]
CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer.

J Transl Med. 2018-10-25

[7]
Combined MEK and STAT3 Inhibition Uncovers Stromal Plasticity by Enriching for Cancer-Associated Fibroblasts With Mesenchymal Stem Cell-Like Features to Overcome Immunotherapy Resistance in Pancreatic Cancer.

Gastroenterology. 2022-12

[8]
B cell-Derived IL35 Drives STAT3-Dependent CD8 T-cell Exclusion in Pancreatic Cancer.

Cancer Immunol Res. 2020-2-5

[9]
MicroRNA-448 suppresses metastasis of pancreatic ductal adenocarcinoma through targeting JAK1/STAT3 pathway.

Oncol Rep. 2017-7-3

[10]
Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy inhibits pancreatic cancer growth and metastasis.

Cancer Cell. 2023-5-8

引用本文的文献

[1]
Single-nucleus RNA sequencing and spatial transcriptomics reveal an immunosuppressive tumor microenvironment related to metastatic dissemination during pancreatic cancer liver metastasis.

Theranostics. 2025-4-13

[2]
Targeting Triple NK Cell Suppression Mechanisms: A Comprehensive Review of Biomarkers in Pancreatic Cancer Therapy.

Int J Mol Sci. 2025-1-9

[3]
Divergent response to radio-immunotherapy is defined by intrinsic features of the tumor microenvironment.

J Immunother Cancer. 2025-1-7

[4]
Tumor-infiltrating regulatory T cell: A promising therapeutic target in tumor microenvironment.

Chin Med J (Engl). 2024-12-20

[5]
The Link Between the Gut Microbiome and Bone Metastasis.

Int J Mol Sci. 2024-11-11

[6]
IL15/IL15Rα complex induces an anti-tumor immune response following radiation therapy only in the absence of Tregs and fails to induce expansion of progenitor TCF1+ CD8 T cells.

bioRxiv. 2024-9-22

[7]
Deciphering Regulatory T-Cell Dynamics in Cancer Immunotherapy: Mechanisms, Implications, and Therapeutic Innovations.

ACS Pharmacol Transl Sci. 2024-7-3

[8]
Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives.

Signal Transduct Target Ther. 2024-8-2

[9]
Necroptosis enhances 'don't eat me' signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis.

Nat Commun. 2024-7-18

[10]
Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations.

Med Oncol. 2024-7-13

本文引用的文献

[1]
Association of Ablative Radiation Therapy With Survival Among Patients With Inoperable Pancreatic Cancer.

JAMA Oncol. 2021-5-1

[2]
Induction of ADAM10 by Radiation Therapy Drives Fibrosis, Resistance, and Epithelial-to-Mesenchyal Transition in Pancreatic Cancer.

Cancer Res. 2021-6-15

[3]
Response to radiotherapy in pancreatic ductal adenocarcinoma is enhanced by inhibition of myeloid-derived suppressor cells using STAT3 anti-sense oligonucleotide.

Cancer Immunol Immunother. 2021-4

[4]
Antisense Oligonucleotide Remodels the Suppressive Tumor Microenvironment to Enhance Immune Activation in Combination with Anti-PD-L1.

Clin Cancer Res. 2020-12-1

[5]
Basics and Frontiers on Pancreatic Cancer for Radiation Oncology: Target Delineation, SBRT, SIB technique, MRgRT, Particle Therapy, Immunotherapy and Clinical Guidelines.

Cancers (Basel). 2020-6-29

[6]
Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer.

Cancer Cell. 2020-3-16

[7]
Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition.

Cells. 2020-1-15

[8]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

[9]
Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis.

Cancer Discov. 2020-3

[10]
Dendritic cells in pancreatic cancer immunotherapy: Vaccines and combination immunotherapies.

Pathol Res Pract. 2019-10-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索