文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结合 QTL-seq 和连锁作图揭示两个等级玉米×大刍草衍生群体中单小穗与双小穗的遗传基础

Combining QTL-seq and linkage mapping to uncover the genetic basis of single vs. paired spikelets in the advanced populations of two-ranked maize×teosinte.

机构信息

Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China.

Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu, 610300, Sichuan, China.

出版信息

BMC Plant Biol. 2021 Dec 4;21(1):572. doi: 10.1186/s12870-021-03353-3.


DOI:10.1186/s12870-021-03353-3
PMID:34863103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8642974/
Abstract

BACKGROUND: Teosinte ear bears single spikelet, whereas maize ear bears paired spikelets, doubling the number of grains in each cupulate during maize domestication. In the past 20 years, genetic analysis of single vs. paired spikelets (PEDS) has been stagnant. A better understanding of genetic basis of PEDS could help fine mapping of quantitative trait loci (QTL) and cloning of genes. RESULTS: In this study, the advanced mapping populations (BCF and BCF) of maize × teosinte were developed by phenotypic recurrent selection. Four genomic regions associated with PEDS were detected using QTL-seq, located on 194.64-299.52 Mb, 0-162.80 Mb, 12.82-97.17 Mb, and 125.06-157.01 Mb of chromosomes 1, 3, 6, and 8, respectively. Five QTL for PEDS were identified in the regions of QTL-seq using traditional QTL mapping. Each QTL explained 1.12-38.05% of the phenotypic variance (PVE); notably, QTL qPEDS3.1 with the average PVE of 35.29% was identified in all tests. Moreover, 14 epistatic QTL were detected, with the total PVE of 47.57-66.81% in each test. The QTL qPEDS3.1 overlapped with, or was close to, one locus of 7 epistatic QTL. Near-isogenic lines (NILs) of QTL qPEDS1.1, qPEDS3.1, qPEDS6.1, and qPEDS8.1 were constructed. All individuals of NIL-qPEDS6.1(MT1) and NIL-qPEDS8.1(MT1) showed paired spikelets (PEDS = 0), but the flowering time was 7 days shorter in the NIL-qPEDS8.1(MT1). The ratio of plants with PEDS > 0 was low (1/18 to 3/18) in the NIL-qPEDS1.1(MT1) and NIL-qPEDS3.1(MT1), maybe due to the epistatic effect. CONCLUSION: Our results suggested that major QTL, minor QTL, epistasis and photoperiod were associated with the variation of PEDS, which help us better understand the genetic basis of PEDS and provide a genetic resource for fine mapping of QTL.

摘要

背景:玉米穗上有两个成对的小穗,而 teosinte 穗上只有一个单个小穗,这使玉米在驯化过程中小穗杯中每个小穗的粒数增加了一倍。在过去的 20 年中,对单个小穗与成对小穗(PEDS)的遗传分析一直停滞不前。更好地了解 PEDS 的遗传基础可以帮助精细定位数量性状位点(QTL)和克隆基因。

结果:本研究利用表型反复选择,开发了玉米×teosinte 的高级作图群体(BCF 和 BCF)。利用 QTL-seq 检测到与 PEDS 相关的四个基因组区域,分别位于第 1、3、6 和 8 染色体的 194.64-299.52 Mb、0-162.80 Mb、12.82-97.17 Mb 和 125.06-157.01 Mb。在 QTL-seq 区域使用传统 QTL 作图鉴定了五个 PEDS 的 QTL。每个 QTL 解释了 1.12-38.05%的表型方差(PVE);值得注意的是,在所有测试中均鉴定到平均 PVE 为 35.29%的 QTL qPEDS3.1。此外,还检测到 14 个上位性 QTL,每个测试的总 PVE 为 47.57-66.81%。QTL qPEDS3.1 与 14 个上位性 QTL 中的一个或多个位点重叠或接近。构建了 QTL qPEDS1.1、qPEDS3.1、qPEDS6.1 和 qPEDS8.1 的近等基因系(NILs)。NIL-qPEDS6.1(MT1)和 NIL-qPEDS8.1(MT1)的所有个体均表现出成对小穗(PEDS=0),但 NIL-qPEDS8.1(MT1)的开花时间缩短了 7 天。NIL-qPEDS1.1(MT1)和 NIL-qPEDS3.1(MT1)中 PEDS>0 的植物比例较低(1/18 到 3/18),可能是由于上位性效应。

结论:我们的结果表明,主要 QTL、次要 QTL、上位性和光周期与 PEDS 的变化有关,这有助于我们更好地理解 PEDS 的遗传基础,并为 QTL 的精细定位提供遗传资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/8a4f89d5d3dd/12870_2021_3353_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/2c2688a26745/12870_2021_3353_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/ce7d9495c25a/12870_2021_3353_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/8e16b90a8889/12870_2021_3353_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/8a4f89d5d3dd/12870_2021_3353_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/2c2688a26745/12870_2021_3353_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/ce7d9495c25a/12870_2021_3353_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/8e16b90a8889/12870_2021_3353_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/8642974/8a4f89d5d3dd/12870_2021_3353_Fig4_HTML.jpg

相似文献

[1]
Combining QTL-seq and linkage mapping to uncover the genetic basis of single vs. paired spikelets in the advanced populations of two-ranked maize×teosinte.

BMC Plant Biol. 2021-12-4

[2]
Identification of a major QTL and genome-wide epistatic interactions for single vs. paired spikelets in a maize-teosinte F population.

Mol Breed. 2022-2-8

[3]
Genetic Analysis of Teosinte Alleles for Kernel Composition Traits in Maize.

G3 (Bethesda). 2017-4-3

[4]
Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize.

BMC Genomics. 2020-5-12

[5]
Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1.

Genetics. 2011-4-21

[6]
Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem.

J Integr Plant Biol. 2016-1

[7]
Fine Mapping of a QTL Associated with Kernel Row Number on Chromosome 1 of Maize.

PLoS One. 2016-3-1

[8]
Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing.

BMC Genomics. 2016-11-14

[9]
Low validation rate of quantitative trait loci for Gibberella ear rot resistance in European maize.

Theor Appl Genet. 2017-1

[10]
Identification and genetic mapping for rht-DM, a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach.

Genes Genomics. 2018-10

引用本文的文献

[1]
An aldehyde dehydrogenase gene, , positively regulates fiber strength in upland cotton ( L.).

Front Plant Sci. 2024-4-26

[2]
Identification of QTLs and allelic effect controlling lignan content in sesame ( L.) using QTL-seq approach.

Front Genet. 2023-12-11

[3]
QTL mapping and BSA-seq map a major QTL for the node of the first fruiting branch in cotton.

Front Plant Sci. 2023-1-25

本文引用的文献

[1]
, a Novel QTL for the Fertility Restoration of Maize CMS-C Identified by QTL-seq.

G3 (Bethesda). 2020-7-7

[2]
QTG-Seq Accelerates QTL Fine Mapping through QTL Partitioning and Whole-Genome Sequencing of Bulked Segregant Samples.

Mol Plant. 2018-12-28

[3]
Identification and genetic mapping for rht-DM, a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach.

Genes Genomics. 2018-10

[4]
QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea.

Plant Biotechnol J. 2018-7-4

[5]
Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height.

BMC Genomics. 2018-3-27

[6]
enhances maize adaptation to higher latitudes.

Proc Natl Acad Sci U S A. 2017-12-26

[7]
Identification, Mapping, and Molecular Marker Development for : A New Quantitative Trait Locus Conferring Resistance to Stalk Rot in Maize ( L.).

Front Plant Sci. 2017-8-3

[8]
QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.).

Plant Biotechnol J. 2017-8

[9]
Rapid identification of QTLs underlying resistance to Cucumber mosaic virus in pepper (Capsicum frutescens).

Theor Appl Genet. 2017-1

[10]
Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.

Nat Plants. 2015-1-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索