Acharya Jiwan, Pant Bishweshwar, Prasad Ojha Gunendra, Park Mira
Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea.
Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea.
J Colloid Interface Sci. 2022 Mar 15;610:863-878. doi: 10.1016/j.jcis.2021.11.129. Epub 2021 Nov 24.
Tailoring hierarchical hybrid core-shell electrodes with impartial microstructural features and excellent electroactive constituents is crucial for the design of high-performance supercapacitors (SCs). Herein, for the first time, we fabricate uniformly aligned porous ZnFeO (ZFO) nanosheet arrays onto reduced graphene oxide-garnished conductive Ni foam (rGO-NF) substrates and subsequently embellish the first layer of ZFO nanosheets with morphology-controlled secondary NiMoO nanosheets to achieve a hierarchical 3D core-shell structure of ZnFeO@NiMoO nanosheet arrays (NSAs) onto rGO-NF for SC applications. Improving the synergistic effect of the core-shell nanoarchitecture with a conductive rGO-NF substrate, the hierarchical 3D ZFO@NMO NSAs tend to have superb electronic conductivity, tailoribility, effective nanoporous channels, and appropriate roadways for rapid ion/electron transfer, which are required for rapid reversible redox reactions, thus reflecting the excellent electrochemical features, including the excellent specific capacitance, good rate performance, and prolonged cyclic performance of the three electrode assemblies for SCs. An asymmetric supercapacitor (ASC) device composed of ZFO@NMO NSAs@rGO-NF as the cathode and MOF-derived hollow porous carbon (MDHPC) as the anode exhibits a high energy density of 58.6 Wh kg at a power density of 799 W kg with prolonged cyclic durability (89.6 % after 7000 cycles), thus indicating its potential applicability towards advanced hybrid SCs.
定制具有公正微观结构特征和优异电活性成分的分层混合核壳电极对于高性能超级电容器(SCs)的设计至关重要。在此,我们首次在还原氧化石墨烯修饰的导电泡沫镍(rGO-NF)基底上制备了均匀排列的多孔ZnFeO(ZFO)纳米片阵列,随后用形态可控的二次NiMoO纳米片修饰第一层ZFO纳米片,以在rGO-NF上实现用于SCs应用的ZnFeO@NiMoO纳米片阵列(NSAs)的分层三维核壳结构。通过改善核壳纳米结构与导电rGO-NF基底的协同效应,分层三维ZFO@NMO NSAs往往具有出色的电子导电性、可剪裁性、有效的纳米孔道以及用于快速离子/电子转移的合适通道,这些都是快速可逆氧化还原反应所必需的,从而体现出优异的电化学特性,包括SCs三电极组件的优异比电容、良好的倍率性能和延长的循环性能。由ZFO@NMO NSAs@rGO-NF作为阴极和MOF衍生的中空多孔碳(MDHPC)作为阳极组成的不对称超级电容器(ASC)器件在功率密度为799 W kg时表现出58.6 Wh kg的高能量密度,且具有延长的循环耐久性(7000次循环后为89.6%),因此表明其在先进混合SCs方面的潜在适用性。