Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning, 110032, PR China.
Free Radic Biol Med. 2022 Jan;178:202-214. doi: 10.1016/j.freeradbiomed.2021.11.043. Epub 2021 Dec 2.
Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.
线粒体活性氧(ROS)损伤和心房重构是心房颤动(AF)发生的关键底物。支链氨基酸(BCAAs)分解代谢缺陷在多种心血管疾病中起着关键作用。然而,心房 BCAA 分解代谢的改变及其在 AF 中的作用在很大程度上仍不清楚。本研究旨在探讨 BCAA 分解代谢在 AF 发病机制中的作用,并进一步评估褪黑素在蛋白激酶 G(PKG)-cAMP 反应元件结合蛋白(CREB)-Krüppel 样因子 15(KLF15)信号转导方面的治疗效果。我们发现,血管紧张素 II 处理的心房表现出明显升高的 BCAA 水平、降低的 BCAA 分解代谢酶活性、增加的 AF 易感性、加重的心房电和结构重构以及增强的线粒体 ROS 损伤。褪黑素的共同给药减轻了这些有害作用,而 BCAA 的口服补充则加剧了这些作用。褪黑素治疗改善了 BCAA 诱导的心房损伤,并逆转了 BCAA 诱导的心房 PKGIα 表达、CREB 磷酸化和 KLF15 表达下调。然而,PKG 的抑制部分消除了褪黑素的有益作用。总之,这些数据表明,心房 BCAA 分解代谢缺陷通过加重组织纤维化和线粒体 ROS 损伤促进了 AF 的发病机制。褪黑素通过激活 PKG-CREB-KLF15 改善了 Ang II 诱导的心房结构和电重构。本研究揭示了 AF 发生的其他机制,并强调了通过靶向 BCAA 分解代谢为 AF 治疗提供新机会的可能性。褪黑素可能是 AF 干预的潜在治疗剂。