Suppr超能文献

一种使用临床记录自动检测不良事件的弱监督模型。

A weakly supervised model for the automated detection of adverse events using clinical notes.

作者信息

Sanyal Josh, Rubin Daniel, Banerjee Imon

机构信息

Department of Biomedical Data Science, Stanford University School of Medicine, United States.

Department of Radiology, Mayo Clinic, AZ, United States; School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, United States.

出版信息

J Biomed Inform. 2022 Feb;126:103969. doi: 10.1016/j.jbi.2021.103969. Epub 2021 Dec 3.

Abstract

With clinical trials unable to detect all potential adverse reactions to drugs and medical devices prior to their release into the market, accurate post-market surveillance is critical to ensure their safety and efficacy. Electronic health records (EHR) contain rich observational patient data, making them a valuable source to actively monitor the safety of drugs and devices. While structured EHR data and spontaneous reporting systems often underreport the complexities of patient encounters and outcomes, free-text clinical notes offer greater detail about a patient's status. Previous studies have proposed machine learning methods to detect adverse events from clinical notes, but suffer from manually extracted features, reliance on costly hand-labeled data, and lack of validation on external datasets. To address these challenges, we develop a weakly-supervised machine learning framework for adverse event detection from unstructured clinical notes and evaluate it on insulin pump failure as a test case. Our model accurately detected cases of pump failure with 0.842 PR AUC on the holdout test set and 0.815 PR AUC when validated on an external dataset. Our approach allowed us to leverage a large dataset with far less hand-labeled data and can be easily transferred to additional adverse events for scalable post-market surveillance.

摘要

由于临床试验无法在药品和医疗器械上市前检测出所有潜在的不良反应,准确的上市后监测对于确保其安全性和有效性至关重要。电子健康记录(EHR)包含丰富的患者观察数据,使其成为积极监测药品和器械安全性的宝贵来源。虽然结构化的EHR数据和自发报告系统往往低估了患者诊疗过程和结果的复杂性,但自由文本临床记录提供了关于患者状况的更多细节。先前的研究提出了机器学习方法来从临床记录中检测不良事件,但存在手动提取特征、依赖昂贵的人工标注数据以及缺乏对外部数据集进行验证等问题。为应对这些挑战,我们开发了一个用于从非结构化临床记录中检测不良事件的弱监督机器学习框架,并以胰岛素泵故障为例进行评估。我们的模型在保留测试集上以0.842的PR AUC准确检测出泵故障病例,在外部数据集上验证时PR AUC为0.815。我们的方法使我们能够利用一个大型数据集,所需的人工标注数据少得多,并且可以轻松转移到其他不良事件,以进行可扩展的上市后监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验