Boston Children's Hospital, MA, USA.
1862Harvard Medical School, Boston, MA, USA.
Health Informatics J. 2022 Oct-Dec;28(4):14604582221132429. doi: 10.1177/14604582221132429.
We describe our approach to surveillance of reportable safety events captured in hospital data including free-text clinical notes. We hypothesize that a) some patient safety events are documented only in the clinical notes and not in any other accessible source; and b) large-scale abstraction of event data from clinical notes is feasible.
We use regular expressions to generate a training data set for a machine learning model and apply this model to the full set of clinical notes and conduct further review to identify safety events of interest. We demonstrate this approach on peripheral intravenous (PIV) infiltrations and extravasations (PIVIEs).
During Phase 1, we collected 21,362 clinical notes, of which 2342 were reviewed. We identified 125 PIV events, of which 44 cases (35%) were not captured by other patient safety systems. During Phase 2, we collected 60,735 clinical notes and identified 440 infiltrate events. Our classifier demonstrated accuracy above 90%.
Our method to identify safety events from the free text of clinical documentation offers a feasible and scalable approach to enhance existing patient safety systems. Expert reviewers, using a machine learning model, can conduct routine surveillance of patient safety events.
我们描述了一种监测医院数据中报告安全事件的方法,包括自由文本临床记录。我们假设:a)一些安全事件仅记录在临床记录中,而不在任何其他可访问的来源中;b)从临床记录中大规模提取事件数据是可行的。
我们使用正则表达式生成机器学习模型的训练数据集,并将该模型应用于所有临床记录,并进行进一步审查以识别感兴趣的安全事件。我们在周围静脉(PIV)渗漏和外渗(PIVIE)中展示了这种方法。
在第 1 阶段,我们收集了 21362 份临床记录,其中 2342 份进行了审查。我们确定了 125 个 PIV 事件,其中 44 例(35%)未被其他患者安全系统捕获。在第 2 阶段,我们收集了 60735 份临床记录,确定了 440 个渗漏事件。我们的分类器的准确率超过 90%。
我们从临床文档的自由文本中识别安全事件的方法为增强现有的患者安全系统提供了一种可行且可扩展的方法。使用机器学习模型的专家审查员可以对患者安全事件进行常规监测。