Suppr超能文献

基于社区的细胞、组织和肿瘤图像分析方法。

A community-based approach to image analysis of cells, tissues and tumors.

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.

Computational Biology Program, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.

出版信息

Comput Med Imaging Graph. 2022 Jan;95:102013. doi: 10.1016/j.compmedimag.2021.102013. Epub 2021 Nov 19.

Abstract

Emerging multiplexed imaging platforms provide an unprecedented view of an increasing number of molecular markers at subcellular resolution and the dynamic evolution of tumor cellular composition. As such, they are capable of elucidating cell-to-cell interactions within the tumor microenvironment that impact clinical outcome and therapeutic response. However, the rapid development of these platforms has far outpaced the computational methods for processing and analyzing the data they generate. While being technologically disparate, all imaging assays share many computational requirements for post-collection data processing. As such, our Image Analysis Working Group (IAWG), composed of researchers in the Cancer Systems Biology Consortium (CSBC) and the Physical Sciences - Oncology Network (PS-ON), convened a workshop on "Computational Challenges Shared by Diverse Imaging Platforms" to characterize these common issues and a follow-up hackathon to implement solutions for a selected subset of them. Here, we delineate these areas that reflect major axes of research within the field, including image registration, segmentation of cells and subcellular structures, and identification of cell types from their morphology. We further describe the logistical organization of these events, believing our lessons learned can aid others in uniting the imaging community around self-identified topics of mutual interest, in designing and implementing operational procedures to address those topics and in mitigating issues inherent in image analysis (e.g., sharing exemplar images of large datasets and disseminating baseline solutions to hackathon challenges through open-source code repositories).

摘要

新兴的多重成像平台以亚细胞分辨率提供了对越来越多的分子标记物的前所未有的观察,并揭示了肿瘤细胞组成的动态演变。因此,它们能够阐明肿瘤微环境中影响临床结果和治疗反应的细胞间相互作用。然而,这些平台的快速发展远远超过了处理和分析它们生成的数据的计算方法。虽然技术上存在差异,但所有成像分析都具有许多用于收集后数据处理的计算要求。因此,我们的图像分析工作组(IAWG)由癌症系统生物学联盟(CSBC)和物理科学-肿瘤学网络(PS-ON)的研究人员组成,召开了一次关于“不同成像平台共享的计算挑战”的研讨会,以描述这些共同问题,并在后续的黑客马拉松中为其中的一部分问题实施解决方案。在这里,我们描绘了这些反映该领域主要研究方向的领域,包括图像配准、细胞和亚细胞结构的分割以及根据形态识别细胞类型。我们进一步描述了这些事件的逻辑组织,相信我们的经验教训可以帮助其他人围绕共同感兴趣的主题将成像社区团结起来,设计和实施解决这些主题的操作程序,并减轻图像分析中的固有问题(例如,共享大型数据集的示例图像并通过开源代码存储库传播黑客马拉松挑战的基线解决方案)。

相似文献

1
A community-based approach to image analysis of cells, tissues and tumors.基于社区的细胞、组织和肿瘤图像分析方法。
Comput Med Imaging Graph. 2022 Jan;95:102013. doi: 10.1016/j.compmedimag.2021.102013. Epub 2021 Nov 19.
8
NiftyNet: a deep-learning platform for medical imaging.NiftyNet:一个用于医学成像的深度学习平台。
Comput Methods Programs Biomed. 2018 May;158:113-122. doi: 10.1016/j.cmpb.2018.01.025. Epub 2018 Jan 31.

本文引用的文献

7
Deep learning powers cancer diagnosis in digital pathology.深度学习助力数字病理学中的癌症诊断。
Comput Med Imaging Graph. 2021 Mar;88:101820. doi: 10.1016/j.compmedimag.2020.101820. Epub 2020 Dec 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验