State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; College of Environmental Science and Engineering and Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China.
J Photochem Photobiol B. 2022 Jan;226:112368. doi: 10.1016/j.jphotobiol.2021.112368. Epub 2021 Nov 23.
To investigate effects of UV radiation (UVR, 280-400 nm) on coccolithophorids under nutrient-limited conditions, we grew Gephyrocapsa oceanica to determine its resilience to consecutive daily short-term exposures to +UVR (irradiances >295 nm) under a range of nitrate availabilities (100, 24, 12, 6 and 3 μM). +UVR alone significantly hampered the growth of G. oceanica, with the synergistic negative effects of +UVR and N-limitation being about 58% and 22% greater than under UVR or N-limitation alone, respectively. Most 3 μM nitrate cultures died, but those exposed to UVR succumbed sooner. This was due to a failure of photoprotection and repair mechanisms under low N-availability with exposures to UVR. Additionally, the UVR-induced inhibition of the effective quantum yield of photosystem II (PSII) was significantly higher and was further aggravated by N limitation. The algal cells increased photoprotective pigments and UV-absorbing compounds as a priority rather than using calcification for defense against UVR, indicating a trade-off in energy and resource allocation. Our results indicate the negative effects of UVR on coccolithophorid growth and photosynthesis, and highlight the important role of N availability in defense against UVR as well as high PAR. We predict that enhanced N-limitation in future surface oceans due to warming-induced stratification will exacerbate the sensitivity of G. oceanica to UVR, while coccolithophores can be potentially more susceptible to other environmental stresses due to increased levels of nutrient limitation.
为了研究在营养限制条件下紫外线辐射(UVR,280-400nm)对颗石藻的影响,我们培养了海洋球石藻,以确定其在一系列硝酸盐可利用性(100、24、12、6 和 3μM)下对连续短期暴露于+UVR(>295nm 辐照度)的恢复力。单独的+UVR 显著阻碍了海洋球石藻的生长,+UVR 和 N 限制的协同负面效应分别比单独 UVR 或 N 限制下的负面效应大约 58%和 22%。大多数 3μM 硝酸盐培养物死亡,但暴露于 UVR 的培养物更早死亡。这是由于在低 N 可利用性下,暴露于 UVR 时,光保护和修复机制失效。此外,UVR 诱导的光合作用系统 II(PSII)有效量子产率的抑制作用显著更高,并且在 N 限制下进一步加剧。藻类细胞优先增加光保护色素和紫外线吸收化合物,而不是利用钙化来防御 UVR,这表明在能量和资源分配上存在权衡。我们的研究结果表明,UVR 对颗石藻生长和光合作用有负面影响,并强调了 N 可利用性在防御 UVR 以及高光 PAR 方面的重要作用。我们预测,由于变暖引起的分层,未来海洋表面的 N 限制加剧将加剧海洋球石藻对 UVR 的敏感性,而由于营养限制水平的增加,颗石藻可能更容易受到其他环境压力的影响。