Alam Khorshed, Islam Md Mahmudul, Gong Kai, Abbasi Muhammad Nazeer, Li Ruijuan, Zhang Youming, Li Aiying
Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
Department of Microbiology, Rajshahi Institute of Biosciences (RIB), Affi. University of Rajshahi, Rajshahi, 6212, Bangladesh.
Comput Biol Med. 2022 Jan;140:105046. doi: 10.1016/j.compbiomed.2021.105046. Epub 2021 Nov 18.
As an emerging resource, Gram-negative Burkholderia bacteria were able to produce a wide range of bioactive secondary metabolites with potential therapeutic and biotechnological applications. Genome mining has emerged as an influential platform for screening and pinpointing natural product diversity with the increasing number of Burkholderia genome sequences. Here, for genome mining of potential biosynthetic gene clusters (BGCs) and prioritizing prolific producing Burkholderia strains, we investigated the relationship between species evolution and distribution of main BGC groups using computational analysis of complete genome sequences of 248 Burkholderia species publicly available. We uncovered significantly differential distribution patterns of BGCs in the Burkholderia phyla, even among strains that are genetically very similar. We found various types of BGCs in Burkholderia, including some representative and most common BGCs for biosynthesis of encrypted or known terpenes, non-ribosomal peptides (NRPs) and some hybrid BGCs for cryptic products. We also observed that Burkholderia contain a lot of unspecified BGCs, representing high potentials to produce novel compounds. Analysis of BGCs for RiPPs (Ribosomally synthesized and posttranslationally modified peptides) and a texobactin-like BGC as examples showed wide classification and diversity of RiPP BGCs in Burkholderia at species level and metabolite predication. In conclusion, as the biggest investigation in silico by far on BGCs of the particular genus Burkholderia, our data implied a great diversity of natural products in Burkholderia and BGC distributions closely related to phylogenetic variation, and suggested different or concurrent strategies used to identify new drug molecules from these microorganisms will be important for the selection of potential BGCs and prolific producing strains for drug discovery.
作为一种新兴资源,革兰氏阴性伯克霍尔德氏菌能够产生多种具有潜在治疗和生物技术应用价值的生物活性次生代谢产物。随着伯克霍尔德氏菌基因组序列数量的增加,基因组挖掘已成为筛选和确定天然产物多样性的一个有影响力的平台。在这里,为了对潜在的生物合成基因簇(BGCs)进行基因组挖掘并对高产伯克霍尔德氏菌菌株进行优先级排序,我们通过对公开可用的248种伯克霍尔德氏菌完整基因组序列进行计算分析,研究了物种进化与主要BGC组分布之间的关系。我们发现伯克霍尔德氏菌门中BGCs的分布存在显著差异,即使在遗传上非常相似的菌株之间也是如此。我们在伯克霍尔德氏菌中发现了各种类型的BGCs,包括一些用于合成加密或已知萜类、非核糖体肽(NRPs)的代表性和最常见的BGCs,以及一些用于隐秘产物的杂交BGCs。我们还观察到伯克霍尔德氏菌含有许多未明确的BGCs,这代表了产生新化合物的巨大潜力。以核糖体合成和翻译后修饰肽(RiPPs)的BGCs和一种类替考拉宁BGC为例进行分析,结果表明在物种水平和代谢产物预测方面,伯克霍尔德氏菌中RiPP BGCs具有广泛的分类和多样性。总之,作为迄今为止对伯克霍尔德氏菌属BGCs进行的最大规模的计算机模拟研究,我们的数据表明伯克霍尔德氏菌中天然产物具有高度多样性,且BGCs分布与系统发育变异密切相关,并表明从这些微生物中鉴定新药物分子的不同或并行策略对于选择潜在的BGCs和高产菌株进行药物发现至关重要。