Suppr超能文献

液泡己糖转运对于花序茎木质部发育是必需的。

A vacuolar hexose transport is required for xylem development in the inflorescence stem.

机构信息

Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France.

Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, bat 360, 91405 Orsay Cedex, France.

出版信息

Plant Physiol. 2022 Feb 4;188(2):1229-1247. doi: 10.1093/plphys/kiab551.

Abstract

In Angiosperms, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis (Arabidopsis thaliana), among the genes encoding tonoplastic transporters, SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER 16 (SWEET16) and SWEET17 expression has been previously detected in the vascular system. Here, using a reverse genetics approach, we propose that sugar exchanges at the tonoplast, regulated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the accumulation of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by Fourier-transformed infrared spectroscopy in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development partially depends on the exchange of hexoses at the tonoplast of xylem-forming cells.

摘要

在被子植物中,血管系统的发育受转录因子复杂网络的控制。然而,血管细胞中养分可用性如何影响它们的发育仍有待解决。在细胞水平上,细胞质中糖的可用性主要通过质膜上主动和/或易化运输的糖交换来调节。在拟南芥(Arabidopsis thaliana)中,质膜转运蛋白基因中,液泡膜蔗糖协同转运蛋白 16(SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER 16,SWEET16)和 SWEET17 的表达先前已在血管系统中检测到。在这里,我们使用反向遗传学方法提出,质膜上的糖交换受 SWEET16 调控,这对于木质部细胞分裂很重要,这一点尤其体现在 swt16 突变体中木质部细胞数量减少和 SWEET16 在原形成层-木质部边界处的积累上。此外,我们证明了 SWEET16 和/或 SWEET17 介导的己糖转运对于维持木质部次生细胞壁的形成是必需的。这一结果与傅里叶变换红外光谱在 swt16swt17 双突变体中测量到的木质部细胞壁组成缺陷以及几个参与次生细胞壁合成的基因的上调相一致。因此,我们的工作支持了这样一种模型,即木质部发育部分依赖于木质部形成细胞液泡膜上己糖的交换。

相似文献

1
A vacuolar hexose transport is required for xylem development in the inflorescence stem.
Plant Physiol. 2022 Feb 4;188(2):1229-1247. doi: 10.1093/plphys/kiab551.
2
SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves.
Plant Physiol. 2014 Feb;164(2):777-89. doi: 10.1104/pp.113.232751. Epub 2013 Dec 31.
4
Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis.
Plant Physiol. 2013 Nov;163(3):1338-52. doi: 10.1104/pp.113.224972. Epub 2013 Sep 12.
7
Salinity Effects on Sugar Homeostasis and Vascular Anatomy in the Stem of the Inflorescence.
Int J Mol Sci. 2019 Jun 28;20(13):3167. doi: 10.3390/ijms20133167.
10
The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility.
Plant Cell. 2014 Jul;26(7):2962-77. doi: 10.1105/tpc.114.125963. Epub 2014 Jul 17.

引用本文的文献

4
Lignin accumulation in cell wall plays a role in clubroot resistance.
Front Plant Sci. 2024 Jul 23;15:1401265. doi: 10.3389/fpls.2024.1401265. eCollection 2024.
9
Cellular export of sugars and amino acids: role in feeding other cells and organisms.
Plant Physiol. 2021 Dec 4;187(4):1893-1914. doi: 10.1093/plphys/kiab228.

本文引用的文献

1
Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance.
Plant Physiol. 2021 Dec 4;187(4):2716-2730. doi: 10.1093/plphys/kiab436.
2
The plant axis as the command centre for (re)distribution of sucrose and amino acids.
J Plant Physiol. 2021 Oct;265:153488. doi: 10.1016/j.jplph.2021.153488. Epub 2021 Aug 4.
5
MYB20, MYB42, MYB43, and MYB85 Regulate Phenylalanine and Lignin Biosynthesis during Secondary Cell Wall Formation.
Plant Physiol. 2020 Mar;182(3):1272-1283. doi: 10.1104/pp.19.01070. Epub 2019 Dec 23.
6
A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis.
Plant Cell. 2020 Feb;32(2):319-335. doi: 10.1105/tpc.19.00562. Epub 2019 Dec 5.
7
Resolving subcellular plant metabolism.
Plant J. 2019 Nov;100(3):438-455. doi: 10.1111/tpj.14472. Epub 2019 Sep 25.
8
Salinity Effects on Sugar Homeostasis and Vascular Anatomy in the Stem of the Inflorescence.
Int J Mol Sci. 2019 Jun 28;20(13):3167. doi: 10.3390/ijms20133167.
9
Phytol metabolism in plants.
Prog Lipid Res. 2019 Apr;74:1-17. doi: 10.1016/j.plipres.2019.01.002. Epub 2019 Jan 7.
10
High levels of auxin signalling define the stem-cell organizer of the vascular cambium.
Nature. 2019 Jan;565(7740):485-489. doi: 10.1038/s41586-018-0837-0. Epub 2019 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验