Suppr超能文献

利用电子健康记录数据开发和验证经活检证实的急性间质性肾炎的诊断模型。

Development and external validation of a diagnostic model for biopsy-proven acute interstitial nephritis using electronic health record data.

机构信息

Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.

Indiana University School of Medicine, Indianapolis, IN, USA.

出版信息

Nephrol Dial Transplant. 2022 Oct 19;37(11):2214-2222. doi: 10.1093/ndt/gfab346.

Abstract

BACKGROUND

Patients with acute interstitial nephritis (AIN) can present without typical clinical features, leading to a delay in diagnosis and treatment. We therefore developed and validated a diagnostic model to identify patients at risk of AIN using variables from the electronic health record.

METHODS

In patients who underwent a kidney biopsy at Yale University between 2013 and 2018, we tested the association of >150 variables with AIN, including demographics, comorbidities, vital signs and laboratory tests (training set 70%). We used least absolute shrinkage and selection operator methodology to select prebiopsy features associated with AIN. We performed area under the receiver operating characteristics curve (AUC) analysis with internal (held-out test set 30%) and external validation (Biopsy Biobank Cohort of Indiana). We tested the change in model performance after the addition of urine biomarkers in the Yale AIN study.

RESULTS

We included 393 patients (AIN 22%) in the training set, 158 patients (AIN 27%) in the test set, 1118 patients (AIN 11%) in the validation set and 265 patients (AIN 11%) in the Yale AIN study. Variables in the selected model included serum creatinine {adjusted odds ratio [aOR] 2.31 [95% confidence interval (CI) 1.42-3.76]}, blood urea nitrogen:creatinine ratio [aOR 0.40 (95% CI 0.20-0.78)] and urine dipstick specific gravity [aOR 0.95 (95% CI 0.91-0.99)] and protein [aOR 0.39 (95% CI 0.23-0.68)]. This model showed an AUC of 0.73 (95% CI 0.64-0.81) in the test set, which was similar to the AUC in the external validation cohort [0.74 (95% CI 0.69-0.79)]. The AUC improved to 0.84 (95% CI 0.76-0.91) upon the addition of urine interleukin-9 and tumor necrosis factor-α.

CONCLUSIONS

We developed and validated a statistical model that showed a modest AUC for AIN diagnosis, which improved upon the addition of urine biomarkers. Future studies could evaluate this model and biomarkers to identify unrecognized cases of AIN.

摘要

背景

急性间质性肾炎(AIN)患者可能没有典型的临床特征,导致诊断和治疗的延误。因此,我们开发并验证了一种诊断模型,该模型使用电子健康记录中的变量来识别患有 AIN 的风险患者。

方法

在 2013 年至 2018 年间在耶鲁大学进行肾活检的患者中,我们测试了 150 多个变量与 AIN 的关联,包括人口统计学、合并症、生命体征和实验室检查(训练集 70%)。我们使用最小绝对收缩和选择算子方法来选择与 AIN 相关的活检前特征。我们使用内部(保留测试集 30%)和外部验证(印第安纳州活检生物库队列)进行接受者操作特征曲线(AUC)分析。我们测试了在耶鲁 AIN 研究中添加尿液生物标志物后模型性能的变化。

结果

我们纳入了 393 名(AIN 22%)患者的训练集,158 名(AIN 27%)患者的测试集,1118 名(AIN 11%)患者的验证集和 265 名(AIN 11%)的耶鲁 AIN 研究。入选模型的变量包括血清肌酐(调整后的优势比 [aOR] 2.31 [95%置信区间 (CI) 1.42-3.76])、血尿素氮:肌酐比值[aOR 0.40 (95% CI 0.20-0.78)]和尿比重[aOR 0.95 (95% CI 0.91-0.99)]和蛋白质[aOR 0.39 (95% CI 0.23-0.68)]。该模型在测试集中的 AUC 为 0.73(95% CI 0.64-0.81),与外部验证队列的 AUC 相似[0.74(95% CI 0.69-0.79)]。在添加尿液白细胞介素-9 和肿瘤坏死因子-α后,AUC 提高到 0.84(95% CI 0.76-0.91)。

结论

我们开发并验证了一种统计模型,该模型对 AIN 诊断的 AUC 表现适中,通过添加尿液生物标志物可提高 AUC。未来的研究可以评估该模型和生物标志物,以识别未被识别的 AIN 病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d267/9755995/01a0267b255d/gfab346fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验