Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN.
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN.
Am J Kidney Dis. 2020 Sep;76(3):350-360. doi: 10.1053/j.ajkd.2019.12.014. Epub 2020 Apr 24.
RATIONALE & OBJECTIVE: The use of kidney histopathology for predicting kidney failure is not established. We hypothesized that the use of histopathologic features of kidney biopsy specimens would improve prediction of clinical outcomes made using demographic and clinical variables alone.
Retrospective cohort study and development of a clinical prediction model.
SETTING & PARTICIPANTS: All 2,720 individuals from the Biopsy Biobank Cohort of Indiana who underwent kidney biopsy between 2002 and 2015 and had at least 2 years of follow-up.
NEW PREDICTORS & ESTABLISHED PREDICTORS: Demographic variables, comorbid conditions, baseline clinical characteristics, and histopathologic features.
Time to kidney failure, defined as sustained estimated glomerular filtration rate ≤ 10mL/min/1.73m.
Multivariable Cox regression model with internal validation by bootstrapping. Models including clinical and demographic variables were fit with the addition of histopathologic features. To assess the impact of adding a histopathology variable, the amount of variance explained (r) and the C index were calculated. The impact on prediction was assessed by calculating the net reclassification index for each histopathologic variable and for all combined.
Median follow-up was 3.1 years. Within 5 years of biopsy, 411 (15.1%) patients developed kidney failure. Multivariable analyses including demographic and clinical variables revealed that severe glomerular obsolescence (adjusted HR, 2.03; 95% CI, 1.51-2.03), severe interstitial fibrosis and tubular atrophy (adjusted HR, 1.99; 95% CI, 1.52-2.59), and severe arteriolar hyalinosis (adjusted HR, 1.53; 95% CI, 1.14-2.05) were independently associated with the primary outcome. The addition of all histopathologic variables to the clinical model yielded a net reclassification index for kidney failure of 5.1% (P < 0.001) with a full model C statistic of 0.915. Analyses addressing the competing risk for death, optimism, or shrinkage did not significantly change the results.
Selection bias from the use of clinically indicated biopsies and exclusion of patients with less than 2 years of follow-up, as well as reliance on surrogate indicators of kidney failure onset.
A model incorporating histopathologic features from kidney biopsy specimens improved prediction of kidney failure and may be valuable clinically. Future studies will be needed to understand whether even more detailed characterization of kidney tissue may further improve prognostication about the future trajectory of estimated glomerular filtration rate.
目前,肾脏组织病理学检查在预测肾功能衰竭方面的应用尚未得到证实。我们假设,使用肾脏活检标本的组织病理学特征可以提高使用人口统计学和临床变量进行临床结局预测的准确性。
回顾性队列研究和临床预测模型的建立。
印第安纳州活检生物库队列中的 2720 名个体,他们于 2002 年至 2015 年间接受了肾脏活检,且随访时间至少 2 年。
人口统计学变量、合并症、基线临床特征和组织病理学特征。
以持续估算肾小球滤过率(eGFR)≤ 10ml/min/1.73m2定义为肾功能衰竭,即肾脏衰竭的时间。
采用内部验证的多变量 Cox 回归模型,通过自举法进行内部验证。首先拟合包含临床和人口统计学变量的模型,然后在此基础上加入组织病理学特征。为了评估加入组织病理学变量的影响,计算解释方差量(r)和 C 指数。通过计算每个组织病理学变量和所有变量组合的净重新分类指数来评估对预测的影响。
中位随访时间为 3.1 年。活检后 5 年内,411 例(15.1%)患者发生了肾脏衰竭。多变量分析显示,严重肾小球废弃(调整后的 HR,2.03;95%CI,1.51-2.03)、严重间质纤维化和肾小管萎缩(调整后的 HR,1.99;95%CI,1.52-2.59)和严重小动脉玻璃样变(调整后的 HR,1.53;95%CI,1.14-2.05)与主要结局独立相关。将所有组织病理学变量添加到临床模型中,肾脏衰竭的净重新分类指数为 5.1%(P<0.001),完全模型 C 统计量为 0.915。分析考虑了死亡、乐观主义或收缩的竞争风险,结果并未发生显著变化。
由于使用了临床指征性活检,存在选择偏倚,以及排除了随访时间少于 2 年的患者,同时依赖于肾脏衰竭起始的替代指标,因此可能存在选择偏倚。
纳入肾脏活检标本组织病理学特征的模型提高了对肾脏衰竭的预测能力,在临床上可能具有价值。未来的研究将需要了解更详细的肾脏组织特征是否可以进一步提高对未来估算肾小球滤过率轨迹的预后判断。