Suppr超能文献

通过光敏金属有机框架中单位点/纳米团簇催化剂的协同作用利用一氧化碳进行供料羰基化反应

Feeding Carbonylation with CO via the Synergy of Single-Site/Nanocluster Catalysts in a Photosensitizing MOF.

作者信息

Fu Shanshan, Yao Shuang, Guo Song, Guo Guang-Chen, Yuan Wenjuan, Lu Tong-Bu, Zhang Zhi-Ming

机构信息

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.

出版信息

J Am Chem Soc. 2021 Dec 15;143(49):20792-20801. doi: 10.1021/jacs.1c08908. Epub 2021 Dec 4.

Abstract

Solar-driven carbonylation with CO replacing toxic CO as a C1 source is of considerable interest; however it remains a great challenge due to the inert CO molecule. Herein, we integrate cobalt single-site and ultrafine CuPd nanocluster catalysts into a porphyrin-based metal-organic framework to construct composite photocatalysts (CuPd)@PCN-222(Co) ( = 1.3, 2.0, and 3.0 nm). Upon visible light irradiation, excited porphyrin can concurrently transfer electrons to Co single sites and CuPd nanoclusters, providing the possibility for coupling CO photoreduction and Suzuki/Sonogashira reactions. This multicomponent synergy in (CuPd)@PCN-222(Co) can not only replace dangerous CO gas but also dramatically promote the photosynthesis of benzophenone in CO with over 90% yield and 97% selectivity under mild condition. Systematic investigations clearly decipher the function and collaboration among different components in these composite catalysts, highlighting a new insight into developing a sustainable protocol for carbonylation reactions by employing greenhouse gas CO as a C1 source.

摘要

用一氧化碳(CO)替代有毒的一氧化碳作为C1源进行太阳能驱动的羰基化反应备受关注;然而,由于CO分子的惰性,这仍然是一个巨大的挑战。在此,我们将钴单原子和超细CuPd纳米团簇催化剂整合到基于卟啉的金属有机框架中,构建复合光催化剂(CuPd)@PCN - 222(Co)(尺寸分别为1.3、2.0和3.0纳米)。在可见光照射下,被激发的卟啉能够同时将电子转移到钴单原子和CuPd纳米团簇上,为耦合CO光还原反应与铃木/ Sonogashira反应提供了可能性。(CuPd)@PCN - 222(Co)中的这种多组分协同作用不仅可以替代危险的CO气体,还能在温和条件下显著促进二苯甲酮在CO中的光合作用,产率超过90%,选择性达到97%。系统研究清楚地阐明了这些复合催化剂中不同组分的功能及协同作用,为通过利用温室气体CO作为C1源开发可持续的羰基化反应方案提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验