Suppr超能文献

磷调控铜原子位点的d带中心以实现可见光照射下高效的CO光还原

Phosphorus Tailors the d-Band Center of Copper Atomic Sites for Efficient CO Photoreduction under Visible-Light Irradiation.

作者信息

Sun Xiaohui, Sun Lian, Li Guanna, Tuo Yongxiao, Ye Chenliang, Yang Jiarui, Low Jingxiang, Yu Xiang, Bitter Johannes H, Lei Yongpeng, Wang Dingsheng, Li Yadong

机构信息

Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2022 Sep 19;61(38):e202207677. doi: 10.1002/anie.202207677. Epub 2022 Aug 16.

Abstract

Photoreduction of CO into solar fuels has received great interest, but suffers from low catalytic efficiency and poor selectivity. Herein, two single-Cu-atom catalysts with unique Cu configurations in phosphorus-doped carbon nitride (PCN), namely, Cu N @PCN and Cu P @PCN were fabricated via selective phosphidation, and tested in visible light-driven CO reduction by H O without sacrificial agents. Cu N @PCN was exclusively active for CO production with a rate of 49.8 μmol  g  h , outperforming most polymeric carbon nitride (C N ) based catalysts, while Cu P @PCN preferably yielded H . Experimental and theoretical analysis suggested that doping P in C N by replacing a corner C atom upshifted the d-band center of Cu in Cu N @PCN close to the Fermi level, which boosted the adsorption and activation of CO on Cu N , making Cu N @PCN efficiently convert CO to CO. In contrast, Cu P @PCN with a much lower Cu 3d electron energy exhibited negligible CO adsorption, thereby preferring H formation via photocatalytic H O splitting.

摘要

将二氧化碳光还原为太阳能燃料已引起了极大的关注,但存在催化效率低和选择性差的问题。在此,通过选择性磷化制备了两种在磷掺杂氮化碳(PCN)中具有独特铜构型的单铜原子催化剂,即Cu-N@PCN和Cu-P@PCN,并在无牺牲剂的情况下,对其进行了可见光驱动的水还原二氧化碳测试。Cu-N@PCN对一氧化碳的生成具有专一活性,速率为49.8 μmol g⁻¹ h⁻¹,优于大多数基于聚合氮化碳(CN)的催化剂,而Cu-P@PCN则更倾向于生成氢气。实验和理论分析表明,通过取代一个角碳原子在氮化碳中掺杂磷,使Cu-N@PCN中铜的d带中心上移至接近费米能级,这增强了一氧化碳在Cu-N上的吸附和活化,使得Cu-N@PCN能够有效地将二氧化碳转化为一氧化碳。相比之下,具有低得多的铜3d电子能量的Cu-P@PCN表现出可忽略不计的一氧化碳吸附,因此更倾向于通过光催化水分解生成氢气。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验