Suppr超能文献

遗传算法的径向基函数神经网络算法在退役铀尾矿库环境修复和处理效果评价中的应用分析。

Application Analysis of Radial Basis Function Neural Network Algorithm of Genetic Algorithm for Environmental Restoration and Treatment Effect Evaluation of Decommissioned Uranium Tailings Ponds.

机构信息

School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, Hunan, China.

Decommissioning Engineering Technology Research Center of Hunan Province Uranium Tailings Reservoir, University of South China, Hengyang 421001, Hunan, China.

出版信息

Comput Intell Neurosci. 2021 Nov 24;2021:1650096. doi: 10.1155/2021/1650096. eCollection 2021.

Abstract

A new analysis method for the environmental stability of uranium tailing ponds is established in this paper, and the stability intervals and environmental stability rates of indicators are defined in precise mathematical language and analyzed with examples. The results show that the overall environmental stability of this uranium tailings pond is still in a poor state after the first phase of decommissioning treatment, and special decommissioning treatment should be carried out for factors such as pH and radionuclides Po and Pb. Using the powerful nonlinear mapping function of the artificial neural network, a radial basis function neural network algorithm was constructed to predict the environmental stability of the uranium tailing pond. It provides a new feasible method for the comprehensive evaluation technology of uranium tailings ponds. . The research work in this paper mainly analyzed the environmental stabilization process and stability of decommissioned uranium tailings ponds, proposed a new concept of environmental stability with ecological and environmental protection concepts and gave it a new connotation, established an environmental stability evaluation index system for decommissioned uranium tailings ponds through index screening by using rough set theory, comprehensively considered the influence of environmental factors such as external wastewater and exhaust gas, and realized the multifactor. The system of evaluation indexes for the stability of decommissioned uranium tailings ponds was established by combining multiple factors, and the long-term monitoring and modeling of the environmental stabilization process of decommissioned uranium tailings ponds was carried out by using mathematical methods. The results show that the RBFNN-GA algorithm can reduce the training error of the random radial basis function neural network, improve the generalization ability of the network, and make it capable of handling large data sets.

摘要

本文建立了一种铀尾矿库环境稳定性的新分析方法,并用精确的数学语言定义了稳定性区间和指标的环境稳定性率,并通过实例进行了分析。结果表明,该铀尾矿库在退役处理的第一阶段后整体环境稳定性仍较差,应针对 pH 值和放射性核素 Po 和 Pb 等因素进行特殊退役处理。利用人工神经网络强大的非线性映射功能,构建了径向基函数神经网络算法来预测铀尾矿库的环境稳定性。为铀尾矿库的综合评价技术提供了一种新的可行方法。本文的研究工作主要分析了退役铀尾矿库的环境稳定化过程和稳定性,提出了一个具有生态环保理念的环境稳定性新概念,并赋予了其新的内涵,通过粗集理论的指标筛选,建立了退役铀尾矿库环境稳定性评价指标体系,综合考虑了外部废水和废气等环境因素的影响,实现了多因素。退役铀尾矿库稳定性评价指标体系的建立,运用数学方法对退役铀尾矿库环境稳定化过程进行了长期监测和建模。结果表明,RBFNN-GA 算法可以降低随机径向基函数神经网络的训练误差,提高网络的泛化能力,使其能够处理大数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b6b/8635904/3251dac68b07/CIN2021-1650096.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验