Suppr超能文献

i-基序形成寡脱氧核苷酸中非经典胞嘧啶质子化所揭示的C≡C三键振动变化

Changes of C≡C Triple Bond Vibration that Disclosed Non-Canonical Cytosine Protonation in i-Motif-Forming Oligodeoxynucleotides.

作者信息

Itaya Ryota, Idei Wakana, Nakamura Takashi, Nishihara Tatsuya, Kurihara Ryohsuke, Okamoto Akimitsu, Tanabe Kazuhito

机构信息

Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan.

出版信息

ACS Omega. 2021 Nov 17;6(47):31595-31604. doi: 10.1021/acsomega.1c04074. eCollection 2021 Nov 30.

Abstract

Non-canonical protonation at cytosine (C) in DNA is related to a formation of second order DNA structures such as i-motif, which has a role in gene regulation. Although the detailed structural information is indispensable for comprehension of their functions in cells, the protonation status of C in complicated environments is still elusive. To provide a reporter system of non-canonical protonation, we focused on the molecular vibration that could be monitored using the Raman spectroscopy. We prepared a cytosine derivative (C) with an acetylene unit as a Raman tag, and found that the Raman signal of acetylene in C in oligodeoxynucleotides (ODNs) changed due to protonation at the cytosine ring which shortened an acetylene bond. The signal change in i-motif-forming ODNs was also observed in crowded environments with polyethylene glycol, evidencing protonation in i-motif DNA in complicated environments. This system would be one of tracking tools for protonation in DNA structures.

摘要

DNA中胞嘧啶(C)的非经典质子化与二级DNA结构如i-基序的形成有关,i-基序在基因调控中发挥作用。尽管详细的结构信息对于理解它们在细胞中的功能必不可少,但复杂环境中C的质子化状态仍然难以捉摸。为了提供一种非经典质子化的报告系统,我们专注于可通过拉曼光谱监测的分子振动。我们制备了一种带有乙炔单元作为拉曼标签的胞嘧啶衍生物(C),并发现寡脱氧核苷酸(ODN)中C的乙炔拉曼信号因胞嘧啶环上的质子化而发生变化,这缩短了乙炔键。在含有聚乙二醇的拥挤环境中也观察到了形成i-基序的ODN的信号变化,证明了复杂环境中i-基序DNA的质子化。该系统将成为追踪DNA结构中质子化的工具之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1b/8637604/58b8fc090725/ao1c04074_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验