Suppr超能文献

与 COVID-19 致病性相关的 SARS-CoV-2 遗传变异。

SARS-CoV-2 genetic variations associated with COVID-19 pathogenicity.

机构信息

Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.

Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.

出版信息

Microb Genom. 2021 Dec;7(12). doi: 10.1099/mgen.0.000734.

Abstract

In this study, we performed genome-wide association analyses on SARS-CoV-2 genomes to identify genetic mutations associated with pre-symptomatic/asymptomatic COVID-19 cases. Various potential covariates and confounding factors of COVID-19 severity, including patient age, gender and country, as well as virus phylogenetic relatedness were adjusted for. In total, 3021 full-length genomes of SARS-CoV-2 generated from original clinical samples and whose patient status could be determined conclusively as either 'pre-symptomatic/asymptomatic' or 'symptomatic' were retrieved from the GISAID database. We found that the mutation 11 083G>T, located in the coding region of non-structural protein 6, is significantly associated with asymptomatic COVID-19. Patient age is positively correlated with symptomatic infection, while gender is not significantly correlated with the development of the disease. We also found that the effects of the mutation, patient age and gender do not vary significantly among countries, although each country appears to have varying baseline chances of COVID-19 symptom development.

摘要

在这项研究中,我们对 SARS-CoV-2 基因组进行了全基因组关联分析,以鉴定与无症状/有症状 COVID-19 病例相关的遗传突变。调整了 COVID-19 严重程度的各种潜在协变量和混杂因素,包括患者年龄、性别和国家,以及病毒的系统发育关系。总共从 GISAID 数据库中检索到了 3021 个源自原始临床样本的全长 SARS-CoV-2 基因组,这些样本的患者状态可以明确确定为“无症状/有症状”或“有症状”。我们发现,位于非结构蛋白 6 编码区的突变 11083G>T 与无症状 COVID-19 显著相关。患者年龄与有症状感染呈正相关,而性别与疾病的发展无显著相关性。我们还发现,尽管每个国家的 COVID-19 症状发生的基线概率似乎不同,但突变、患者年龄和性别对各国的影响并无显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/366b/8767342/f104ad0eb10b/mgen-7-0734-g001.jpg

相似文献

1
SARS-CoV-2 genetic variations associated with COVID-19 pathogenicity.
Microb Genom. 2021 Dec;7(12). doi: 10.1099/mgen.0.000734.
2
Molecular epidemiology of SARS-CoV-2 isolated from COVID-19 family clusters.
BMC Med Genomics. 2021 Jun 1;14(1):144. doi: 10.1186/s12920-021-00990-3.
3
The extent of molecular variation in novel SARS-CoV-2 after the six-month global spread.
Infect Genet Evol. 2021 Jul;91:104800. doi: 10.1016/j.meegid.2021.104800. Epub 2021 Mar 5.
4
Whole-genome sequencing of SARS-CoV-2 reveals the detection of G614 variant in Pakistan.
PLoS One. 2021 Mar 23;16(3):e0248371. doi: 10.1371/journal.pone.0248371. eCollection 2021.
6
Global dynamics of SARS-CoV-2 clades and their relation to COVID-19 epidemiology.
Sci Rep. 2021 Apr 19;11(1):8435. doi: 10.1038/s41598-021-87713-x.
7
Pitfalls of barcodes in the study of worldwide SARS-CoV-2 variation and phylodynamics.
Zool Res. 2021 Jan 18;42(1):87-93. doi: 10.24272/j.issn.2095-8137.2020.364.
8
Oligonucleotide capture sequencing of the SARS-CoV-2 genome and subgenomic fragments from COVID-19 individuals.
PLoS One. 2021 Aug 25;16(8):e0244468. doi: 10.1371/journal.pone.0244468. eCollection 2021.
9
Mutational landscape of SARS-CoV-2 genome in Turkey and impact of mutations on spike protein structure.
PLoS One. 2021 Dec 6;16(12):e0260438. doi: 10.1371/journal.pone.0260438. eCollection 2021.
10
Different selection dynamics of S and RdRp between SARS-CoV-2 genomes with and without the dominant mutations.
Infect Genet Evol. 2021 Jul;91:104796. doi: 10.1016/j.meegid.2021.104796. Epub 2021 Mar 3.

引用本文的文献

1
Impact of SARS-CoV-2 Variant NSP6 on Pathogenicity: Genetic Analysis and Cell Biology.
Curr Issues Mol Biol. 2025 May 14;47(5):361. doi: 10.3390/cimb47050361.
2
Contribution of parasite and host genotype to immunopathology of schistosome infections.
Parasit Vectors. 2024 May 7;17(1):203. doi: 10.1186/s13071-024-06286-6.
3
Contribution of parasite and host genotype to immunopathology of schistosome infections.
bioRxiv. 2024 Jan 13:2024.01.12.574230. doi: 10.1101/2024.01.12.574230.
5
The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2.
Antiviral Res. 2023 May;213:105590. doi: 10.1016/j.antiviral.2023.105590. Epub 2023 Mar 31.
7
Predicting COVID-19 disease severity from SARS-CoV-2 spike protein sequence by mixed effects machine learning.
Comput Biol Med. 2022 Oct;149:105969. doi: 10.1016/j.compbiomed.2022.105969. Epub 2022 Aug 17.
8
Predictive model for severe COVID-19 using SARS-CoV-2 whole-genome sequencing and electronic health record data, March 2020-May 2021.
PLoS One. 2022 Jul 12;17(7):e0271381. doi: 10.1371/journal.pone.0271381. eCollection 2022.
9
Genomic Analysis of AZD1222 (ChAdOx1) Vaccine Breakthrough Infections in the City of Mumbai.
Int J Clin Pract. 2022 Feb 11;2022:2449068. doi: 10.1155/2022/2449068. eCollection 2022.

本文引用的文献

1
Covid-19 and gender: lower rate but same mortality of severe disease in women-an observational study.
BMC Pulm Med. 2021 Mar 20;21(1):96. doi: 10.1186/s12890-021-01455-0.
2
Clinical characteristics and related risk factors of disease severity in 101 COVID-19 patients hospitalized in Wuhan, China.
Acta Pharmacol Sin. 2022 Jan;43(1):64-75. doi: 10.1038/s41401-021-00627-2. Epub 2021 Mar 19.
3
Serial interval and incubation period of COVID-19: a systematic review and meta-analysis.
BMC Infect Dis. 2021 Mar 11;21(1):257. doi: 10.1186/s12879-021-05950-x.
7
Spike protein D614G and RdRp P323L: the SARS-CoV-2 mutations associated with severity of COVID-19.
Genomics Inform. 2020 Dec;18(4):e44. doi: 10.5808/GI.2020.18.4.e44. Epub 2020 Dec 7.
8
SARS-CoV-2 Transmission From People Without COVID-19 Symptoms.
JAMA Netw Open. 2021 Jan 4;4(1):e2035057. doi: 10.1001/jamanetworkopen.2020.35057.
9
Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission.
Nat Commun. 2020 Dec 9;11(1):6317. doi: 10.1038/s41467-020-19741-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验