Suppr超能文献

评估清道夫受体富含半胱氨酸结构域与细菌的结合。

Assessment of Scavenger Receptor Cysteine-Rich Domain Binding to Bacteria.

机构信息

Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.

Institute of Human Virology, University of Maryland, Baltimore, MD, USA.

出版信息

Methods Mol Biol. 2022;2421:141-150. doi: 10.1007/978-1-0716-1944-5_10.

Abstract

The scavenger receptor cysteine-rich SRCR domain is an ancient protein domain found in SR-A and SR-I scavenger receptors, which is characterized by a conserved arrangement of cysteines (Martinez et al., Pharmacol Rev 63(4):967-1000, 2011; Sarrias et al., Crit Rev Immunol 24(1):1-37, 2004; Telfer and Baldwin, Cell Immunol 296(1):76-86, 2015; PrabhuDas et al., J Immunol, 2017. 198(10):3775-3789). SRCR domains are divided into group A and group B SRCR domains by virtue of how many cysteines they contain and the resulting disulfide bonding pattern. Group B SRCR domains, found in WC1, CD163, CD5, CD6, Spα and DMBT1, are approximately 100-110 amino acids long and contain 6-8 cysteines predicted to form 3-4 disulfide bonds. The crystal structure of a CD5 group B SRCR domain predicts a fold of two beta-sheets and an alpha helix (Rodamilans et al., J Biol Chem 282(17):12669-12677, 2007; Wang et al., Mol Immunol 48:801-809, 2011). SRCR domains bind to many different types of chemical compounds found on cells, viruses, and microbes and are usually found in multiples in the extracellular domains of transmembrane proteins or in secreted proteins. Small amino acid differences between these SRCR domains lead to significant differences in binding affinity. In addition, SRCR domain genes contain allelic polymorphisms and can be extensively duplicated. Thus, single and duplicated SRCR domain protein gene loci encode a large tunable binding potential. Binding to pathogen-associated molecular patterns (PAMPs) combined with signaling potential predicts an important role for these molecules in the immune response. WC1 SRCR domains bind to the spirochetes Leptospira and Borrelia (Hsu et al., J Immunol 194(5):2280-2288, 2015). CD6 (Sarrias et al., Proc Natl Acad Sci U S A 104(28):11724-11729, 2007), Spα (Sarrias et al., J Biol Chem 280(42):35391-35398, 2005), CD163A (Fabriek et al., Blood 113(4):887-892, 2009) and DMBT1 (Madsen et al., Eur J Immunol 33(8):2327-2336, 2003) bind to Gram-positive and Gram-negative bacteria; CD5 binds to yeast (Vera et al., Proc Natl Acad Sci U S A 106(5):1506-1511, 2009). Identified ligands include lipoteichoic acid, lipopolysaccharide, poly-phosphorylated, and -sulfated compounds such as dextran sulfate sodium, leucine-rich repeat proteins, and fungal mannose (Sarrias et al., Proc Natl Acad Sci U S A 104(28):11724-11729, 2007; Sarrias et al., J Biol Chem 280(42):35391-35398, 2005; Fabriek et al., Blood 113(4):887-892, 2009; Vera et al., Proc Natl Acad Sci U S A 106(5):1506-1511, 2009; End et al., Eur J Immunol 39(3):833-842, 2009; Loimaranta et al., J Biol Chem 284(28):18614-18623, 2009). A conserved linear binding motif (VEVLXXXXW) in an external loop in the SRCR domain has been identified in CD163A and DMBT1 and can be used as a peptide that aggregates bacteria (Fabriek et al., Blood 113(4):887-892, 2009; Bikker et al., J Biol Chem 279(46):47699-47703, 2004; Leito et al., Biol Chem 389(9):1193-1200, 2008). In contrast, WC1 binding to bacteria is mediated by a noncontinuous motif in the native protein, and mutation of the VEVLXXXXW motif has no effect upon bacterial binding (Hsu et al., J Immunol 194(5):2280-2288, 2015). Thus, bacterial binding studies with WC1 SRCR domains must be done with native, correctly disulfide bonded, protein, ideally posttranslationally modified in mammalian cells.WC1 is found in the genomes of most mammals, reptiles, and birds and is expressed exclusively on γδ T cells in ruminants. The 13 bovine WC1 genes encode up to 11 extracellular SRCR domains, organized in the SRCR domain pattern of a1-[b2-c3-d4-e5-d6]-[b7-c8-d9-e10-d'11], where the alphabet designations indicate homology between genes and across species (Chen et al., BMC Genet 13:86, 2012; Herzig et al., BMC Evol Biol 10:181, 2010; Herzig and Baldwin, BMC Genomics 10:191, 2009). Some of the signaling co-receptor WC1 molecules are required for the γδ T cell response to Leptospira (Wang et al., Mol Immunol 48:801-809, 2011; Rogers et al., J Immunol 174(6):3386-3393, 2005; Wang et al., Eur J Immunol 39(1):254-266, 2009). The WC1 expressed on responsive γδ T cells is correlated with its direct binding to Leptospira via some of its SRCR domains (Hsu et al., J Immunol 194(5):2280-2288, 2015). Because WC1 γδ T cells share a restriction in their γδ TCRs and WC1 has TCR co-receptor activity, we hypothesize that WC1 co-ligation with the TCR plays the determining role in the activation of WC1+ γδ T cells by pathogens. Classification of the binding of WC1 SRCR domains, their ligands, and their role in the interaction of 𝛾δ T cells with pathogens relevant to the host will allow these cells to be recruited in next-generation vaccines to pathogens that have significant negative economic and health impact.

摘要

清道夫受体富含半胱氨酸的 SRCR 结构域是一种古老的蛋白质结构域,存在于 SR-A 和 SR-I 清道夫受体中,其特征是半胱氨酸(Martinez 等人,药理学评论 63(4):967-1000, 2011;Sarrias 等人,批判审查免疫学 24(1):1-37, 2004;Telfer 和 Baldwin,细胞免疫学 296(1):76-86, 2015;PrabhuDas 等人,J Immunol, 2017. 198(10):3775-3789)。SRCR 结构域通过其包含的半胱氨酸数量和由此产生的二硫键连接模式分为 A 组和 B 组 SRCR 结构域。在 WC1、CD163、CD5、CD6、Spα 和 DMBT1 中发现的 B 组 SRCR 结构域长约 100-110 个氨基酸,包含 6-8 个预测形成 3-4 个二硫键的半胱氨酸。CD5 B 组 SRCR 结构域的晶体结构预测了一个由两个β-折叠和一个α-螺旋组成的折叠(Rodamilans 等人,J 生物化学 282(17):12669-12677, 2007;Wang 等人,分子免疫学 48:801-809, 2011)。SRCR 结构域结合到细胞、病毒和微生物上存在的许多不同类型的化学化合物,通常在跨膜蛋白的细胞外结构域或分泌蛋白中以多个形式存在。这些 SRCR 结构域之间的小氨基酸差异导致结合亲和力的显著差异。此外,SRCR 结构域基因含有等位基因多态性并且可以广泛重复。因此,单个和重复的 SRCR 结构域蛋白基因座编码了一个大的可调谐的结合潜力。与病原体相关的分子模式(PAMPs)的结合加上信号潜力,预示着这些分子在免疫反应中具有重要作用。WC1 SRCR 结构域结合到螺旋体 Leptospira 和 Borrelia(Hsu 等人,J 免疫学 194(5):2280-2288, 2015)。CD6(Sarrias 等人,美国国家科学院院刊 104(28):11724-11729, 2007;Sarrias 等人,J 生物化学 280(42):35391-35398, 2005;Spα(Sarrias 等人,J 生物化学 280(42):35391-35398, 2005;Spα(Sarrias 等人,J 生物化学 280(42):35391-35398, 2005),CD163A(Fabriek 等人,血液 113(4):887-892, 2009)和 DMBT1(Madsen 等人,欧洲免疫学杂志 33(8):2327-2336, 2003)结合到革兰氏阳性和革兰氏阴性细菌;CD5 结合到酵母(Vera 等人,美国国家科学院院刊 106(5):1506-1511, 2009)。已鉴定的配体包括脂磷壁酸、脂多糖、多磷酸化和 -硫酸化化合物,如葡聚糖硫酸钠、富含亮氨酸重复蛋白和真菌甘露糖(Sarrias 等人,美国国家科学院院刊 104(28):11724-11729, 2007;Sarrias 等人,J 生物化学 280(42):35391-35398, 2005;Fabriek 等人,血液 113(4):887-892, 2009;Vera 等人,美国国家科学院院刊 106(5):1506-1511, 2009;End 等人,欧洲免疫学杂志 39(3):833-842, 2009;Loimaranta 等人,J 生物化学 284(28):18614-18623, 2009)。在 CD163A 和 DMBT1 中已鉴定出一个位于 SRCR 结构域外环的保守线性结合基序(VEVLXXXXW),可用作聚集细菌的肽(Fabriek 等人,血液 113(4):887-892, 2009;Bikker 等人,J 生物化学 279(46):47699-47703, 2004;Leito 等人,生物化学 389(9):1193-1200, 2008)。相比之下,WC1 与细菌的结合是通过天然蛋白质中的非连续基序介导的,并且突变 VEVLXXXXW 基序对细菌结合没有影响(Hsu 等人,J 免疫学 194(5):2280-2288, 2015)。因此,必须使用天然、正确二硫键结合的、理想地在哺乳动物细胞中转译后修饰的蛋白质来进行 WC1 SRCR 结构域的细菌结合研究。WC1 存在于大多数哺乳动物、爬行动物和鸟类的基因组中,并且仅在反刍动物的 γδ T 细胞中表达。13 个牛 WC1 基因编码多达 11 个细胞外 SRCR 结构域,组织在 a1-[b2-c3-d4-e5-d6]-[b7-c8-d9-e10-d'11]的 SRCR 结构域模式中,其中字母指定表示基因和跨物种之间的同源性(Chen 等人,BMC 遗传学 13:86, 2012;Herzig 等人,BMC 进化生物学 10:181, 2010;Herzig 和 Baldwin,BMC 基因组学 10:191, 2009)。一些信号共受体 WC1 分子是 γδ T 细胞对 Leptospira 反应所必需的(Wang 等人,分子免疫学 48:801-809, 2011;Rogers 等人,J 免疫学 174(6):3386-3393, 2005;Wang 等人,欧洲免疫学杂志 39(1):254-266, 2009)。与直接结合 Leptospira 的某些 SRCR 结构域相关的响应 γδ T 细胞上表达的 WC1(Hsu 等人,J 免疫学 194(5):2280-2288, 2015)。由于 WC1 γδ T 细胞在其 γδ TCR 上具有限制,并且 WC1 具有 TCR 共受体活性,因此我们假设 WC1 与 TCR 的共交联在病原体激活 WC1+γδ T 细胞中起决定性作用。WC1 SRCR 结构域的结合、它们的配体及其在与宿主相关的病原体的 γδ T 细胞相互作用中的作用的分类将允许这些细胞在具有重大负面经济和健康影响的病原体的下一代疫苗中被招募。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验