Suppr超能文献

使用最佳的成对差异测量网络对多个分子进行精确的结合自由能计算。

Precise Binding Free Energy Calculations for Multiple Molecules Using an Optimal Measurement Network of Pairwise Differences.

机构信息

Silicon Therapeutics, Suzhou, Jiangsu 215000, China.

Roivant Sciences, Boston, Massachusetts 02210, United States.

出版信息

J Chem Theory Comput. 2022 Feb 8;18(2):650-663. doi: 10.1021/acs.jctc.1c00703. Epub 2021 Dec 6.

Abstract

Alchemical binding free energy (BFE) calculations offer an efficient and thermodynamically rigorous approach to in silico binding affinity predictions. As a result of decades of methodological improvements and recent advances in computer technology, alchemical BFE calculations are now widely used in drug discovery research. They help guide the prioritization of candidate drug molecules by predicting their binding affinities for a biomolecular target of interest (and potentially selectivity against undesirable antitargets). Statistical variance associated with such calculations, however, may undermine the reliability of their predictions, introducing uncertainty both in ranking candidate molecules and in benchmarking their predictive accuracy. Here, we present a computational method that substantially improves the statistical precision in BFE calculations for a set of ligands binding to a common receptor by dynamically allocating computational resources to different BFE calculations according to an optimality objective established in a previous work from our group and extended in this work. Our method, termed Network Binding Free Energy (NetBFE), performs adaptive BFE calculations in iterations, re-optimizing the allocations in each iteration based on the statistical variances estimated from previous iterations. Using examples of NetBFE calculations for protein binding of congeneric ligand series, we demonstrate that NetBFE approaches the optimal allocation in a small number (≤5) of iterations and that NetBFE reduces the statistical variance in the BFE estimates by approximately a factor of 2 when compared to a previously published and widely used allocation method at the same total computational cost.

摘要

化学结合自由能(BFE)计算为计算结合亲和力提供了一种高效且热力学严谨的方法。由于几十年来方法的改进和计算机技术的最新进展,化学 BFE 计算现在广泛用于药物发现研究。它们通过预测候选药物分子与感兴趣的生物分子靶标(以及潜在的对不良拮抗靶标)的结合亲和力来指导候选药物分子的优先级排序。然而,与这些计算相关的统计方差可能会降低其预测的可靠性,从而在候选分子的排序和基准测试其预测准确性方面引入不确定性。在这里,我们提出了一种计算方法,通过根据我们之前的工作中建立的优化目标并在这项工作中扩展的目标,根据优化目标动态分配计算资源,从而大大提高了一组配体与共同受体结合的 BFE 计算的统计精度。我们的方法称为网络结合自由能(NetBFE),通过迭代执行自适应 BFE 计算,在每次迭代中根据从以前迭代中估计的统计方差重新优化分配。使用 NetBFE 计算同类配体系列蛋白质结合的示例,我们证明了 NetBFE 在少量(≤5)迭代中接近最佳分配,并且与以前发表的和广泛使用的分配方法相比,在相同的总计算成本下,NetBFE 可将 BFE 估计的统计方差降低约 2 倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验