从绝对结合自由能计算预测配体选择性。

Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations.

机构信息

Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.

Evotec (U.K.) Ltd. , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.

出版信息

J Am Chem Soc. 2017 Jan 18;139(2):946-957. doi: 10.1021/jacs.6b11467. Epub 2017 Jan 9.

Abstract

Binding selectivity is a requirement for the development of a safe drug, and it is a critical property for chemical probes used in preclinical target validation. Engineering selectivity adds considerable complexity to the rational design of new drugs, as it involves the optimization of multiple binding affinities. Computationally, the prediction of binding selectivity is a challenge, and generally applicable methodologies are still not available to the computational and medicinal chemistry communities. Absolute binding free energy calculations based on alchemical pathways provide a rigorous framework for affinity predictions and could thus offer a general approach to the problem. We evaluated the performance of free energy calculations based on molecular dynamics for the prediction of selectivity by estimating the affinity profile of three bromodomain inhibitors across multiple bromodomain families, and by comparing the results to isothermal titration calorimetry data. Two case studies were considered. In the first one, the affinities of two similar ligands for seven bromodomains were calculated and returned excellent agreement with experiment (mean unsigned error of 0.81 kcal/mol and Pearson correlation of 0.75). In this test case, we also show how the preferred binding orientation of a ligand for different proteins can be estimated via free energy calculations. In the second case, the affinities of a broad-spectrum inhibitor for 22 bromodomains were calculated and returned a more modest accuracy (mean unsigned error of 1.76 kcal/mol and Pearson correlation of 0.48); however, the reparametrization of a sulfonamide moiety improved the agreement with experiment.

摘要

结合选择性是开发安全药物的要求,也是临床前靶标验证中使用的化学探针的关键性质。工程选择性为新药的合理设计增加了相当大的复杂性,因为它涉及到多个结合亲和力的优化。从计算角度来看,结合选择性的预测是一个挑战,计算化学和药物化学界仍然没有普遍适用的方法。基于变分路径的绝对结合自由能计算为亲和力预测提供了严格的框架,因此可以为该问题提供一种通用的方法。我们通过估计三种溴结构域抑制剂在多个溴结构域家族中的亲和力分布来评估基于分子动力学的自由能计算在预测选择性方面的性能,并将结果与等温滴定量热法数据进行比较。考虑了两个案例研究。在第一个案例中,计算了两种类似配体对七个溴结构域的亲和力,与实验结果非常吻合(平均无偏差误差为 0.81kcal/mol,皮尔逊相关系数为 0.75)。在这个测试案例中,我们还展示了如何通过自由能计算来估计配体对不同蛋白质的优先结合取向。在第二个案例中,计算了一种广谱抑制剂对 22 个溴结构域的亲和力,结果的准确性稍差(平均无偏差误差为 1.76kcal/mol,皮尔逊相关系数为 0.48);然而,磺酰胺部分的重新参数化改善了与实验的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b1c/5253712/c321d8ea16a5/ja-2016-11467t_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索