Suppr超能文献

基于动脉自旋标记的动态磁共振血管造影和灌注成像的 k 空间加权图像平均(KWIA)。

k-space weighted image average (KWIA) for ASL-based dynamic MR angiography and perfusion imaging.

机构信息

Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

出版信息

Magn Reson Imaging. 2022 Feb;86:94-106. doi: 10.1016/j.mri.2021.11.017. Epub 2021 Dec 4.

Abstract

A novel denoising algorithm termed k-space weighted image average (KWIA) was proposed to improve the signal-to-noise ratio (SNR) of dynamic MRI, such as arterial spin labeling (ASL)-based dynamic magnetic resonance angiography (dMRA) and perfusion imaging. KWIA divides the k-space of each time frame into multiple rings, the central ring of the k-space remains intact to preserve the image contrast and temporal resolution, while outer rings are progressively averaged with neighboring time frames to increase SNR. Simulations and in-vivo dMRA and multi-delay ASL studies were performed to evaluate the performance of KWIA under various MRI acquisition conditions. SNR ratios and temporal signal errors between KWIA-processed and the original data were measured. Visualization of dynamic blood flow signals as well as quantitative parametric maps were evaluated for KWIA-processed images as compared to the original images. KWIA achieved a SNR ratio of 1.73 for dMRA and 2.0 for multi-delay ASL respectively, which were in accordance with the theoretical predictions. Improved visualization of dynamic blood flow signals was demonstrated using KWIA in distal small vessels in dMRA and small brain structures in multi-delay ASL. Approximately 5% temporal errors were observed in both KWIA-processed dMRA and ASL signals. Fine anatomical features were revealed in the quantitative parametric maps of dMRA, and the residuals of model fitting were reduced for multi-delay ASL. Compared to other conventional denoising methods, KWIA is a flexible denoising algorithm that improves the SNR of ASL-based dMRA and perfusion MRI by up to 2-fold without compromising spatial and temporal resolution or quantification accuracy.

摘要

一种名为 k 空间加权图像平均(KWIA)的新型去噪算法被提出,以提高动态 MRI 的信噪比(SNR),例如基于动脉自旋标记(ASL)的动态磁共振血管造影(dMRA)和灌注成像。KWIA 将每个时间帧的 k 空间分为多个环,k 空间的中心环保持完整以保持图像对比度和时间分辨率,而外环则与相邻时间帧逐渐平均以增加 SNR。进行了模拟和体内 dMRA 和多延迟 ASL 研究,以评估 KWIA 在各种 MRI 采集条件下的性能。测量了 KWIA 处理后和原始数据之间的 SNR 比和时间信号误差。与原始图像相比,评估了 KWIA 处理后的图像的动态血流信号的可视化和定量参数图。KWIA 分别实现了 dMRA 的 SNR 比为 1.73 和多延迟 ASL 的 SNR 比为 2.0,这与理论预测相符。在 dMRA 的远端小血管和多延迟 ASL 的小脑结构中,使用 KWIA 证明了动态血流信号的可视化得到了改善。在 KWIA 处理的 dMRA 和 ASL 信号中观察到约 5%的时间误差。在 dMRA 的定量参数图中显示了精细的解剖特征,并且多延迟 ASL 的模型拟合残差减少了。与其他传统去噪方法相比,KWIA 是一种灵活的去噪算法,可将基于 ASL 的 dMRA 和灌注 MRI 的 SNR 提高多达 2 倍,而不会牺牲空间和时间分辨率或定量准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67fa/8713133/407cec0fec92/nihms-1763444-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验