Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus C, Denmark.
Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus C, Denmark.
Mol Brain. 2021 Dec 6;14(1):173. doi: 10.1186/s13041-021-00882-8.
Dopamine (DA) and norepinephrine (NE) are pivotal neuromodulators that regulate a broad range of brain functions, often in concert. Despite their physiological importance, untangling the relationship between DA and NE in the fine control of output function is currently challenging, primarily due to a lack of techniques to allow the observation of spatiotemporal dynamics with sufficiently high selectivity. Although genetically encoded fluorescent biosensors have been developed to detect DA, their poor selectivity prevents distinguishing DA from NE. Here, we report the development of a red fluorescent genetically encoded GPCR (G protein-coupled receptor)-activation reporter for DA termed 'R-GenGAR-DA'. More specifically, a circular permutated red fluorescent protein (cpmApple) was replaced by the third intracellular loop of human DA receptor D1 (DRD1) followed by the screening of mutants within the linkers between DRD1 and cpmApple. We developed two variants: R-GenGAR-DA1.1, which brightened following DA stimulation, and R-GenGAR-DA1.2, which dimmed. R-GenGAR-DA1.2 demonstrated a reasonable dynamic range (ΔF/F = - 43%), DA affinity (EC = 0.92 µM) and high selectivity for DA over NE (66-fold) in HeLa cells. Taking advantage of the high selectivity of R-GenGAR-DA1.2, we monitored DA in presence of NE using dual-color fluorescence live imaging, combined with the green-NE biosensor GRAB, which has high selectivity for NE over DA (> 350-fold) in HeLa cells and hippocampal neurons grown from primary culture. Thus, this is a first step toward the multiplex imaging of these neurotransmitters in, for example, freely moving animals, which will provide new opportunities to advance our understanding of the high spatiotemporal dynamics of DA and NE in normal and abnormal brain function.
多巴胺 (DA) 和去甲肾上腺素 (NE) 是调节广泛脑功能的关键神经调节剂,通常协同作用。尽管它们具有重要的生理意义,但目前解开 DA 和 NE 在输出功能精细控制中的关系仍然具有挑战性,主要是因为缺乏能够以足够高的选择性观察时空动力学的技术。尽管已经开发出用于检测 DA 的遗传编码荧光生物传感器,但它们的选择性差,无法将 DA 与 NE 区分开来。在这里,我们报告了一种用于 DA 的红色荧光遗传编码 GPCR(G 蛋白偶联受体)激活报告基因的开发,称为“R-GenGAR-DA”。更具体地说,环状排列的红色荧光蛋白 (cpmApple) 被人源 DA 受体 D1 (DRD1) 的第三细胞内环取代,然后在 DRD1 和 cpmApple 之间的连接体中筛选突变体。我们开发了两种变体:R-GenGAR-DA1.1,在 DA 刺激后变亮,以及 R-GenGAR-DA1.2,在 DA 刺激后变暗。R-GenGAR-DA1.2 在 HeLa 细胞中表现出合理的动态范围 (ΔF/F= -43%)、DA 亲和力 (EC=0.92 µM) 和对 DA 相对于 NE 的高选择性(66 倍)。利用 R-GenGAR-DA1.2 的高选择性,我们使用双色荧光活细胞成像在存在 NE 的情况下监测 DA,结合高选择性的绿色 NE 生物传感器 GRAB,其在 HeLa 细胞和原代培养的海马神经元中对 NE 相对于 DA 的选择性 (>350 倍)。因此,这是在例如自由活动的动物中对这些神经递质进行多路成像的第一步,这将为深入了解 DA 和 NE 在正常和异常大脑功能中的高时空动力学提供新的机会。