Suppr超能文献

用于预测临床高风险乳腺癌女性中 MammaPrint 检测低风险概率的列线图。

A nomogram for predicting probability of low risk of MammaPrint results in women with clinically high-risk breast cancer.

机构信息

Division of Breast Surgery, Department of Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

University of Ulsan College of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2021 Dec 6;11(1):23509. doi: 10.1038/s41598-021-02992-8.

Abstract

We aimed to develop a prediction MammaPrint (MMP) genomic risk assessment nomogram model for hormone-receptor positive (HR+) and human epidermal growth factor receptor-2 negative (HER2-) breast cancer and minimal axillary burden (N0-1) tumors using clinicopathological factors of patients who underwent an MMP test for decision making regarding adjuvant chemotherapy. A total of 409 T1-3 N0-1 M0 HR + and HER2- breast cancer patients whose MMP genomic risk results and clinicopathological factors were available from 2017 to 2020 were analyzed. With randomly selected 306 patients, we developed a nomogram for predicting a low-risk subgroup of MMP results and externally validated with remaining patients (n = 103). Multivariate analysis revealed that the age at diagnosis, progesterone receptor (PR) score, nuclear grade, and Ki-67 were significantly associated with MMP risk results. We developed an MMP low-risk predictive nomogram. With a cut off value at 5% and 95% probability of low-risk MMP, the nomogram accurately predicted the results with 100% positive predictive value (PPV) and negative predictive value respectively. When applied to cut-off value at 35%, the specificity and PPV was 95% and 86% respectively. The area under the receiver operating characteristic curve was 0.82 (95% confidence interval [CI] 0.77 to 0.87). When applied to the validation group, the nomogram was accurate with an area under the curve of 0.77 (95% CI 0.68 to 0.86). Our nomogram, which incorporates four traditional prognostic factors, i.e., age, PR, nuclear grade, and Ki-67, could predict the probability of obtaining a low MMP risk in a cohort of high clinical risk patients. This nomogram can aid the prompt selection of patients who does not need additional MMP testing.

摘要

我们旨在开发一种基于临床病理因素的预测 MammaPrint(MMP)基因组风险评估列线图模型,用于评估接受 MMP 检测以辅助辅助化疗决策的激素受体阳性(HR+)和人表皮生长因子受体-2 阴性(HER2-)乳腺癌且腋窝负担最小(N0-1)的 T1-3N0-1M0 HR+和 HER2-乳腺癌患者。对 2017 年至 2020 年 MMP 基因组风险结果和临床病理因素可用的 409 例 T1-3N0-1M0 HR+和 HER2-乳腺癌患者进行了分析。采用随机选择的 306 例患者,建立了 MMP 结果低风险亚组的列线图,并对剩余患者(n=103)进行外部验证。多因素分析显示,诊断时年龄、孕激素受体(PR)评分、核分级和 Ki-67 与 MMP 风险结果显著相关。我们开发了一种 MMP 低风险预测列线图。当 MMP 低风险概率为 5%和 95%时,列线图预测结果的准确率分别为 100%(阳性预测值)和 100%(阴性预测值)。当应用于 35%的截断值时,特异性和阳性预测值分别为 95%和 86%。受试者工作特征曲线下面积为 0.82(95%置信区间 [CI] 0.77 至 0.87)。当应用于验证组时,曲线下面积为 0.77(95%CI 0.68 至 0.86),列线图预测结果准确。该列线图纳入了年龄、PR、核分级和 Ki-67 四个传统预后因素,可预测高临床风险患者中 MMP 低风险的概率。该列线图可帮助快速选择无需额外 MMP 检测的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/982b/8648770/558ed7d8f5fb/41598_2021_2992_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验