Department of Radiology,Yantai Yuhuangding Hospital, Yantai, Shandong 264000 China.
Department of Interventional Therapy, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, China.
Acad Radiol. 2024 Sep;31(9):3524-3534. doi: 10.1016/j.acra.2024.03.035. Epub 2024 Apr 18.
To develop and validate a nomogram that combines contrast-enhanced spectral mammography (CESM) deep learning with clinical-pathological features to predict neoadjuvant chemotherapy (NAC) response (either low Miller Payne (MP-L) grades 1-2 or high MP (MP-H) grades 3-5) in patients with ER-positive/HER2-negative breast cancer.
In this retrospective study, 265 breast cancer patients were randomly allocated into training and test sets (used for models training and testing, respectively) at a 4:1 ratio. Deep learning models, based on the pre-trained ResNet34 model and initially fine-tuned for identifying breast cancer, were trained using low-energy and subtracted CESM images. The predicted results served as deep learning features for the deep learning-based model. Clinical-pathological features, including age, progesterone receptor (PR) status, estrogen receptor (ER) status, Ki67 expression levels, and neutrophil-to-lymphocyte ratio, were used for the clinical model. All these features contributed to the nomogram. Feature selection was performed through univariate analysis. Logistic regression models were developed and chosen using a stepwise selection method. The deep learning-based and clinical models, along with the nomogram, were evaluated using precision-recall curves, receiver operating characteristic (ROC) curves, specificity, recall, accuracy, negative predictive value, positive predictive value (PPV), balanced accuracy, F1-score, and decision curve analysis (DCA).
The nomogram demonstrated considerable predictive ability, with higher area under the ROC curve (0.95, P < 0.05), accuracy (0.94), specificity (0.98), PPV (0.89), and precision (0.89) compared to the deep learning-based and clinical models. In DCA, the nomogram showed substantial clinical value in assisting breast cancer treatment decisions, exhibiting a higher net benefit than the other models.
The nomogram, integrating CESM deep learning with clinical-pathological features, proved valuable for predicting NAC response in patients with ER-positive/HER2-negative breast cancer. Nomogram outperformed deep learning-based and clinical models.
开发并验证一种列线图,该列线图将对比增强光谱乳腺摄影(CESM)深度学习与临床病理特征相结合,以预测 ER 阳性/HER2 阴性乳腺癌患者新辅助化疗(NAC)的反应(低 Miller Payne(MP-L)分级 1-2 或高 MP(MP-H)分级 3-5)。
在这项回顾性研究中,将 265 例乳腺癌患者按照 4:1 的比例随机分配到训练集和测试集(分别用于模型训练和测试)。基于预先训练的 ResNet34 模型,使用低能和减影 CESM 图像对深度学习模型进行初始微调,以识别乳腺癌。预测结果作为深度学习特征用于基于深度学习的模型。临床病理特征,包括年龄、孕激素受体(PR)状态、雌激素受体(ER)状态、Ki67 表达水平和中性粒细胞与淋巴细胞比值,用于临床模型。所有这些特征都有助于列线图的构建。通过单因素分析进行特征选择。使用逐步选择法开发和选择逻辑回归模型。通过精确-召回曲线、接收者操作特征(ROC)曲线、特异性、召回率、准确性、阴性预测值、阳性预测值(PPV)、平衡准确性、F1 评分和决策曲线分析(DCA)评估基于深度学习的模型、临床模型和列线图。
列线图表现出相当高的预测能力,ROC 曲线下面积(AUC)更高(0.95,P<0.05),准确性(0.94)、特异性(0.98)、PPV(0.89)和精密度(0.89)高于基于深度学习的模型和临床模型。在 DCA 中,列线图在辅助乳腺癌治疗决策方面具有显著的临床价值,与其他模型相比,具有更高的净收益。
将 CESM 深度学习与临床病理特征相结合的列线图在预测 ER 阳性/HER2 阴性乳腺癌患者 NAC 反应方面具有较高的价值。列线图优于基于深度学习的模型和临床模型。