Suppr超能文献

基于张量的分级:一种用于分析亨廷顿舞蹈病中变形场的新型基于补丁的分级方法。

TENSOR-BASED GRADING: A NOVEL PATCH-BASED GRADING APPROACH FOR THE ANALYSIS OF DEFORMATION FIELDS IN HUNTINGTON'S DISEASE.

作者信息

Hett Kilian, Johnson Hans, Coupé Pierrick, Paulsen Jane S, Long Jeffrey D, Oguz Ipek

机构信息

Vanderbilt University, Dept. of Electrical Engineering and Computer Science, Nashville TN, USA.

University of Iowa, Dept. of Electrical and Computer Engineering, Iowa City, IA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1091-1095. doi: 10.1109/isbi45749.2020.9098692. Epub 2020 May 22.

Abstract

The improvements in magnetic resonance imaging have led to the development of numerous techniques to better detect structural alterations caused by neurodegenerative diseases. Among these, the patch-based grading framework has been proposed to model local patterns of anatomical changes. This approach is attractive because of its low computational cost and its competitive performance. Other studies have proposed to analyze the deformations of brain structures using tensor-based morphometry, which is a highly interpretable approach. In this work, we propose to combine the advantages of these two approaches by extending the patch-based grading framework with a new tensor-based grading method that enables us to model patterns of local deformation using a log-Euclidean metric. We evaluate our new method in a study of the putamen for the classification of patients with pre-manifest Huntington's disease and healthy controls. Our experiments show a substantial increase in classification accuracy (87.5 ± 0.5 vs. 81.3 ± 0.6) compared to the existing patch-based grading methods, and a good complement to putamen volume, which is a primary imaging-based marker for the study of Huntington's disease.

摘要

磁共振成像技术的进步促使众多技术得以发展,以便更好地检测神经退行性疾病所导致的结构改变。其中,基于补丁的分级框架已被提出用于对解剖结构变化的局部模式进行建模。这种方法因其计算成本低且性能具有竞争力而颇具吸引力。其他研究则提议使用基于张量的形态测量法来分析脑结构的变形,这是一种具有高度可解释性的方法。在这项工作中,我们提议通过用一种新的基于张量的分级方法扩展基于补丁的分级框架,来结合这两种方法的优点,该方法使我们能够使用对数欧几里得度量对局部变形模式进行建模。我们在一项针对壳核的研究中评估了我们的新方法,以对临床前亨廷顿舞蹈病患者和健康对照进行分类。我们的实验表明,与现有的基于补丁的分级方法相比,分类准确率有显著提高(87.5 ± 0.5 对 81.3 ± 0.6),并且对壳核体积有很好的补充作用,壳核体积是亨廷顿舞蹈病研究中基于成像的主要标志物。

相似文献

1
TENSOR-BASED GRADING: A NOVEL PATCH-BASED GRADING APPROACH FOR THE ANALYSIS OF DEFORMATION FIELDS IN HUNTINGTON'S DISEASE.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1091-1095. doi: 10.1109/isbi45749.2020.9098692. Epub 2020 May 22.
2
Patch-Based Abnormality Maps for Improved Deep Learning-Based Classification of Huntington's Disease.
Med Image Comput Comput Assist Interv. 2020 Sep-Oct;12267:636-645. doi: 10.1007/978-3-030-59728-3_62. Epub 2020 Sep 29.
3
Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease.
Brain. 2012 Apr;135(Pt 4):1165-79. doi: 10.1093/brain/aws024.
4
Increased brain tissue sodium concentration in Huntington's Disease - a sodium imaging study at 4 T.
Neuroimage. 2012 Oct 15;63(1):517-24. doi: 10.1016/j.neuroimage.2012.07.009. Epub 2012 Jul 14.
5
Adaptive fusion of texture-based grading for Alzheimer's disease classification.
Comput Med Imaging Graph. 2018 Dec;70:8-16. doi: 10.1016/j.compmedimag.2018.08.002. Epub 2018 Sep 7.
6
Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease.
Neuroimage. 2012 Feb 15;59(4):3736-47. doi: 10.1016/j.neuroimage.2011.10.080. Epub 2011 Nov 9.
7
Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification.
Sci Rep. 2019 Sep 25;9(1):13845. doi: 10.1038/s41598-019-49970-9.
8
Discriminating chorea-acanthocytosis from Huntington's disease with single-case voxel-based morphometry analysis.
J Neurol Sci. 2020 Jan 15;408:116545. doi: 10.1016/j.jns.2019.116545. Epub 2019 Oct 21.
9
Diffusion Tensor Imaging in Preclinical and Human Studies of Huntington's Disease: What Have we Learned so Far?
Curr Med Imaging Rev. 2019;15(6):521-542. doi: 10.2174/1573405614666181115113400.
10
Early grey matter changes in structural covariance networks in Huntington's disease.
Neuroimage Clin. 2016 Oct 12;12:806-814. doi: 10.1016/j.nicl.2016.10.009. eCollection 2016.

引用本文的文献

1
Comprehensive shape analysis of the cortex in Huntington's disease.
Hum Brain Mapp. 2023 Mar;44(4):1417-1431. doi: 10.1002/hbm.26125. Epub 2022 Nov 21.
2
Patch-Based Abnormality Maps for Improved Deep Learning-Based Classification of Huntington's Disease.
Med Image Comput Comput Assist Interv. 2020 Sep-Oct;12267:636-645. doi: 10.1007/978-3-030-59728-3_62. Epub 2020 Sep 29.

本文引用的文献

1
Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification.
Sci Rep. 2019 Sep 25;9(1):13845. doi: 10.1038/s41598-019-49970-9.
2
Adaptive fusion of texture-based grading for Alzheimer's disease classification.
Comput Med Imaging Graph. 2018 Dec;70:8-16. doi: 10.1016/j.compmedimag.2018.08.002. Epub 2018 Sep 7.
3
A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease.
IEEE Trans Biomed Eng. 2017 Jan;64(1):155-165. doi: 10.1109/TBME.2016.2549363. Epub 2016 Apr 1.
4
Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls.
Neuroimage. 2017 Jan 15;145(Pt B):137-165. doi: 10.1016/j.neuroimage.2016.02.079. Epub 2016 Mar 21.
5
Clinical and Biomarker Changes in Premanifest Huntington Disease Show Trial Feasibility: A Decade of the PREDICT-HD Study.
Front Aging Neurosci. 2014 Apr 22;6:78. doi: 10.3389/fnagi.2014.00078. eCollection 2014.
6
Huntington disease: natural history, biomarkers and prospects for therapeutics.
Nat Rev Neurol. 2014 Apr;10(4):204-16. doi: 10.1038/nrneurol.2014.24. Epub 2014 Mar 11.
7
Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease.
Neuroimage Clin. 2012 Oct 17;1(1):141-52. doi: 10.1016/j.nicl.2012.10.002. eCollection 2012.
8
Regionally selective atrophy of subcortical structures in prodromal HD as revealed by statistical shape analysis.
Hum Brain Mapp. 2014 Mar;35(3):792-809. doi: 10.1002/hbm.22214. Epub 2012 Dec 20.
9
Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease.
Neuroimage. 2011 Jun 1;56(3):1134-44. doi: 10.1016/j.neuroimage.2011.03.029. Epub 2011 Mar 16.
10
Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry.
Neuroimage. 2011 Jul 1;57(1):5-14. doi: 10.1016/j.neuroimage.2011.01.079. Epub 2011 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验