基于张量的分级:一种用于分析亨廷顿舞蹈病中变形场的新型基于补丁的分级方法。

TENSOR-BASED GRADING: A NOVEL PATCH-BASED GRADING APPROACH FOR THE ANALYSIS OF DEFORMATION FIELDS IN HUNTINGTON'S DISEASE.

作者信息

Hett Kilian, Johnson Hans, Coupé Pierrick, Paulsen Jane S, Long Jeffrey D, Oguz Ipek

机构信息

Vanderbilt University, Dept. of Electrical Engineering and Computer Science, Nashville TN, USA.

University of Iowa, Dept. of Electrical and Computer Engineering, Iowa City, IA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1091-1095. doi: 10.1109/isbi45749.2020.9098692. Epub 2020 May 22.

Abstract

The improvements in magnetic resonance imaging have led to the development of numerous techniques to better detect structural alterations caused by neurodegenerative diseases. Among these, the patch-based grading framework has been proposed to model local patterns of anatomical changes. This approach is attractive because of its low computational cost and its competitive performance. Other studies have proposed to analyze the deformations of brain structures using tensor-based morphometry, which is a highly interpretable approach. In this work, we propose to combine the advantages of these two approaches by extending the patch-based grading framework with a new tensor-based grading method that enables us to model patterns of local deformation using a log-Euclidean metric. We evaluate our new method in a study of the putamen for the classification of patients with pre-manifest Huntington's disease and healthy controls. Our experiments show a substantial increase in classification accuracy (87.5 ± 0.5 vs. 81.3 ± 0.6) compared to the existing patch-based grading methods, and a good complement to putamen volume, which is a primary imaging-based marker for the study of Huntington's disease.

摘要

磁共振成像技术的进步促使众多技术得以发展,以便更好地检测神经退行性疾病所导致的结构改变。其中,基于补丁的分级框架已被提出用于对解剖结构变化的局部模式进行建模。这种方法因其计算成本低且性能具有竞争力而颇具吸引力。其他研究则提议使用基于张量的形态测量法来分析脑结构的变形,这是一种具有高度可解释性的方法。在这项工作中,我们提议通过用一种新的基于张量的分级方法扩展基于补丁的分级框架,来结合这两种方法的优点,该方法使我们能够使用对数欧几里得度量对局部变形模式进行建模。我们在一项针对壳核的研究中评估了我们的新方法,以对临床前亨廷顿舞蹈病患者和健康对照进行分类。我们的实验表明,与现有的基于补丁的分级方法相比,分类准确率有显著提高(87.5 ± 0.5 对 81.3 ± 0.6),并且对壳核体积有很好的补充作用,壳核体积是亨廷顿舞蹈病研究中基于成像的主要标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索