Suppr超能文献

基于多种扩散指标的全肿瘤直方图分析在脑胶质瘤基因分型中的应用。

Whole-Tumor Histogram Analysis of Multiple Diffusion Metrics for Glioma Genotyping.

机构信息

From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.).

出版信息

Radiology. 2022 Mar;302(3):652-661. doi: 10.1148/radiol.210820. Epub 2021 Dec 7.

Abstract

Background The isocitrate dehydrogenase genotype and codeletion status are key molecular markers included in glioma pathologic diagnosis. Advanced diffusion models provide additional microstructural information. Purpose To compare the diagnostic performance of histogram features of multiple diffusion metrics in predicting glioma and genotyping. Materials and Methods In this prospective study, participants were enrolled from December 2018 to December 2020. Diffusion-weighted imaging was performed by using a spin-echo echo-planar imaging sequence with five values (500, 1000, 1500, 2000, and 2500 sec/mm) in 30 directions for every value and one value of 0. Diffusion metrics of diffusion-tensor imaging (DTI), diffusion-kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator (MAP) were calculated, and their histogram features were analyzed in regions that included the entire tumor and peritumoral edema. Comparisons between groups were performed according to genotype and codeletion status. Logistic regression analysis was used to predict the and genotypes. Results A total of 215 participants (115 men, 100 women; mean age, 48 years ± 13 [standard deviation]) with grade II ( = 68), grade III ( = 35), and grade IV ( = 112) glioma were included. Among the DTI, DKI, NODDI, MAP, and total diffusion models, there were no significant differences in the areas under the receiver operating characteristic curve (AUCs) for predicting mutations (AUC, 0.76, 0.82, 0.78, 0.81, and 0.82, respectively; > .05) and codeletion in gliomas with mutations (AUC, 0.83, 0.81, 0.82, 0.83, and 0.88, respectively; > .05). A regression model with an value of 0.84 was used for the Ki-67 labeling index and histogram features of the diffusion metrics. Conclusion Whole-tumor histogram analysis of multiple diffusion metrics is a promising approach for glioma isocitrate dehydrogenase and genotyping, and the performance of diffusion-tensor imaging is similar to that of advanced diffusion models. Clinical trial registration no. ChiCTR2100048119 © RSNA, 2021

摘要

背景 异柠檬酸脱氢酶基因型和缺失状态是胶质细胞瘤病理诊断中关键的分子标志物。高级扩散模型提供了更多的微观结构信息。目的 比较多种扩散指标直方图特征在预测胶质细胞瘤 IDH 突变和 1p/19q 共缺失状态方面的诊断性能。材料与方法 本前瞻性研究纳入了 2018 年 12 月至 2020 年 12 月期间的参与者。采用自旋回波回波平面成像序列进行弥散加权成像,每个 值(500、1000、1500、2000 和 2500 sec/mm)有 30 个方向,每个 值有一个 0 值。计算弥散张量成像(DTI)、弥散峰度成像(DKI)、神经丝取向分散和密度成像(NODDI)和平均表观扩散系数(MAP)的扩散指标,并在包括整个肿瘤和瘤周水肿的区域内分析其直方图特征。根据 IDH 突变和 1p/19q 共缺失状态对各组进行比较。采用逻辑回归分析预测 IDH 突变和 1p/19q 共缺失状态。结果 共纳入 215 名参与者(115 名男性,100 名女性;平均年龄 48 岁±13[标准差]),包括二级胶质瘤( = 68)、三级胶质瘤( = 35)和四级胶质瘤( = 112)。在 DTI、DKI、NODDI、MAP 和全扩散模型中,用于预测 IDH 突变(AUC 为 0.76、0.82、0.78、0.81 和 0.82,均>0.05)和 IDH 突变型胶质瘤 1p/19q 共缺失(AUC 为 0.83、0.81、0.82、0.83 和 0.88,均>0.05)的受试者工作特征曲线下面积(AUC)之间无显著差异。用于 Ki-67 标记指数和扩散指标直方图特征的回归模型, 值为 0.84。结论 对全肿瘤多扩散指标直方图进行分析是胶质细胞瘤 IDH 突变和 1p/19q 共缺失状态的一种很有前途的方法,弥散张量成像的性能与高级扩散模型相似。临床试验注册号 ChiCTR2100048119 © RSNA,2021

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验